(本小题满分15分)已知函数
,
.
(1)用定义证明:不论
为何实数
在
上为增函数;
(2)若
为奇函数,求
的值;
(3)在(2)的条件下,求
在区间[1,5]上的最小值.
(1)见解析;(2)
;(3)
.
【解析】
试题分析:(1)
的定义域为R, 任取
,------------1分
则
=
.
-----------3分
,∴
.
∴
,即
.
所以不论
为何实数
总为增函数.————————5分
(2)
在
上为奇函数,
∴
,
------------7分
即
.解得
. —————————————10分
(3)由(2)知,
,
由(1) 知,
为增函数,
∴
在区间
上的最小值为
.
------------13分
∵
,
∴
在区间
上的最小值为
.———————————————15分
考点:本题考查用定义法证明函数的单调性;函数的奇偶性;函数的最值。
点评:(1)用的定义法证明函数单调性的步骤:一设二作差三变形四判断符号五得出结论。
(2)灵活应用奇函数的性质:若x=0在函数的定义域内,则f(0)=0。属于基础试题。
科目:高中数学 来源:2012-2013学年福建省高三上学期期中理科数学试卷(解析版) 题型:解答题
(本小题满分15分)
已知函数![]()
(Ⅰ)求函数
的单调区间;
(Ⅱ)若
,试分别解答以下两小题.
(ⅰ)若不等式
对任意的
恒成立,求实数
的取值范围;
(ⅱ)若
是两个不相等的正数,且
,求证:
.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省高三下学期3月联考理科数学 题型:解答题
(本小题满分15分).
已知
、
分别为椭圆
:
的
上、下焦点,其中
也是抛物线
:
的焦点,
点
是
与
在第二象限的交点,且
。
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点P(1,3)和圆
:
,过点P的动直线
与圆
相交于不同的两点A,B,在线段AB取一点Q,满足:
,
(
且
)。求证:点Q总在某定直线上。
![]()
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省高三上学期第三次月考数学文卷 题型:解答题
(本小题满分15分)
如图已知,椭圆
的左、右焦点分别为
、
,过
的直线
与椭圆相交于A、B两点。
(Ⅰ)若
,且
,求椭圆的离心率;
(Ⅱ)若
求
的最大值和最小值。
![]()
查看答案和解析>>
科目:高中数学 来源:2014届浙江省宁波市高一上学期期末考试数学 题型:解答题
(本小题满分15分)若函数
在定义域内存在区间
,满足
在
上的值域为
,则称这样的函数
为“优美函数”.
(Ⅰ)判断函数
是否为“优美函数”?若是,求出
;若不是,说明理由;
(Ⅱ)若函数
为“优美函数”,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010-2011年江苏省高二下学期期中考试理数 题型:解答题
(本小题满分15分)在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题.求:
(1)第1次抽到理科题的概率;
(2)第1次和第2次都抽到理科题的概率;
(3)在第1次抽到理科题的条件下,第2次抽到文科题的概率
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com