【题目】已知函数
.
(1)当
时,求证:
;
(2)当
时,若不等式
恒成立,求实数
的取值范围;
(3)若
,证明
.
【答案】(1)证明见解析;(2)
;(3)证明见解析.
【解析】
(1)当
时,
,根据导数可得函数
的最小值为
,从而可得结论成立;(2)由条件得
,令
,则
.然后分为
和
两种情况进行讨论,可得所求范围.(3)由(2)得当
,
时,
.故要证不等式成立,只需证
,只需证明
,只需证
,然后构造函数并利用函数的单调性可得结论成立.
(1)当
时,
,
∴
,
当
时,
;当
时,![]()
故
在
上单调递减,在
上单调递增,
∴
,
∴
.
(2)由条件得
,
令
,则
.
①当
时,在
上,
,
单调递增,
∴
,即
,
∴
在
上为增函数,
∴
,
∴
时满足条件.
②当
时,令
,解得
,在
上,
,
单调递减,
∴当
时,有
,即
,
∴
在
上为减函数,
∴
,不合题意.
综上实数
的取值范围为
.
(3)由(2)得,当
,
时,
,即
,
要证不等式
,
只需证明
,
只需证明
,
只需证
,
设
,
则
,
∴当
时,
恒成立,故
在
上单调递增,
又
,
∴
恒成立.
∴原不等式成立.
科目:高中数学 来源: 题型:
【题目】定义:曲线
称为椭圆
的“倒椭圆”.已知椭圆
,它的“倒椭圆”
.
(1)写出“倒椭圆”
的一条对称轴、一个对称中心;并写出其上动点横坐标x的取值范围.
(2)过“倒椭圆”
上的点P,作直线PA垂直于x轴且垂足为点A,作直线PB垂直于y轴且垂足为点B,求证:直线AB与椭圆
只有一个公共点.
(3)是否存在直线l与椭圆
无公共点,且与“倒椭圆”
无公共点?若存在,请给出满足条件的直线l,并说明理由;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过圆锥轴的截面为等腰直角三角形
,
为底面圆周上一点,已知
,圆锥体积为
,点
为底面圆的圆心
![]()
(1)求该圆锥的全面积
(2)求异面直线
与
所成角的大小(结果用反三角函数表示)
(3)求点
到平面
的距离
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中正确命题的个数是( )
①命题“函数
的最小值不为
”是假命题;
②“
”是“
”的必要不充分条件;③若
为假命题,则
,
均为假命题;
④若命题
:
,
,则
:
,
;
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四边形ABED中,AB//DE,AB
BE,点C在AB上,且AB
CD,AC=BC=CD=2,现将△ACD沿CD折起,使点A到达点P的位置,且PE
.
![]()
(1)求证:平面PBC
平面DEBC;
(2)求三棱锥P-EBC的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com