精英家教网 > 高中数学 > 题目详情
设Sn是正项数列{an}的前n项和,且Sn=
1
4
an2+
1
2
an-
3
4

(1)求a1的值;
(2)求数列{an}的通项公式;
(3)已知bn=2n,求Tn=a1b1+a2b2+…+anbn的值.
分析:(1)在所给的等式中,令n=1时,即可求得a1的值.
(2)由4sn=an2+2an-3①,可得 4sn-1=
a
2
n-1
+2an-3 (n≥2)②,①-②化简可得an-an-1=2(n≥2),即数列{an}是以3为首项,2为公差之等差数列,由此求得通项公式.
(3)由bn=2n,可得Tn=3×21+5×22+…+(2n+1)•2n+0,用错位相减法求得它的值.
解答:解:(1)当n=1时,由条件可得 a1=s1=
1
4
a
2
1
+
1
2
a1-
3
4
,解出a1=3.
(2)又4sn=an2+2an-3①,可得 4sn-1=
a
2
n-1
+2an-3 (n≥2)②,
①-②4an=an2-
a
2
n-1
+2an-2an-1 ,即
a
2
n
-
a
2
n-1
-2(an+an-1)=0

(
a
 
n
+an-1)(an-an-1-2)=0

∵an+an-1>0,∴an-an-1=2(n≥2),
∴数列{an}是以3为首项,2为公差之等差数列,
∴an=3+2(n-1)=2n+1.
(3)由bn=2n,可得Tn=3×21+5×22+…+(2n+1)•2n+0③,
2Tn=0+3×22+…+(2n-1)•2n+(2n+1)2n+1 ④,
④-③可得 Tn=-3×21-2(22+23+…+2n)+(2n+1)2n+1=(2n-1)2n+1+2,
Tn=(2n-1)•2n+1+2
点评:本题主要考查数列的前n项和与第n项的关系,等差关系的确定,用错位相减法进行数列求和,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果一个数列的各项的倒数成等差数列,我们把这个数列叫做调和数列
(1)若a2,b2,c2成等差数列,证明b+c,c+a,a+b成调和数列;
(2)设Sn是调和数列{
1n
}
的前n项和,证明对于任意给定的实数N,总可以找到一个正整数m,使得当n>m时,Sn>N.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,a2=a(a>0).正项数列{bn}满足bn2=anan+1(n∈N*).若 {bn}是公比为
2
的等比数列
(1)求{an}的通项公式;
(2)若a=
2
,Sn为{an}的前n项和,记Tn=
17Sn-S2n
an+1
Tn0为数列{Tn}的最大项,求n0

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是正项等比数列{an}的前n项和,S2=4,S4=20则数列的首项a1=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设Sn是正项等比数列{an}的前n项和,S2=4,S4=20则数列的首项a1=


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    2
  4. D.
    5

查看答案和解析>>

科目:高中数学 来源:2011年广东省广州市执信中学高考数学三模试卷(文科)(解析版) 题型:选择题

设Sn是正项等比数列{an}的前n项和,S2=4,S4=20则数列的首项a1=( )
A.
B.
C.2
D.5

查看答案和解析>>

同步练习册答案