精英家教网 > 高中数学 > 题目详情

已知=+, 且x1+x2<0, x2+x3<0, x3+x1<0则(     )

A f(x1)+f(x2)+f(x3)>0  B f(x1)+f(x2)+f(x3)<0  C f(x1)+f(x2)+f(x3)=0  D f(x1)+f(x2)+f(x3)符号不能确定.

B


解析:

=3+1,∴>0∴在上是增函数,且是奇函数,

∴f(x1)<f(-x2), f(x2)<f(-x3), f(x3)<f(-x1)∴f(x1)+f(x2)+f(x3)<-[f(x1)+f(x2)+f(x3)]即f(x1)+f(x2)+f(x3)<0故选B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

平面直角坐标系xOy中,已知A1(x1,y1),A2(x2,y2),…,An(xn,yn)是直线l:y=kx+b上的n个点
(n∈N*,k、b均为非零常数).
(1)若数列{xn}成等差数列,求证:数列{yn}也成等差数列;
(2)若点P是直线l上一点,且
OP
=a1
OA1
+a2
OA2
,求a1+a2的值;
(3)若点P满足
OP
=a1
OA1
+a2
OA2
+…+an
OAn
,我们称
OP
是向量
OA1
OA2
,…,
OAn
的线性组合,{an}是该线性组合的系数数列.当
OP
是向量
OA1
OA2
,…,
OAn
的线性组合时,请参考以下线索:
①系数数列{an}需满足怎样的条件,点P会落在直线l上?
②若点P落在直线l上,系数数列{an}会满足怎样的结论?
③能否根据你给出的系数数列{an}满足的条件,确定在直线l上的点P的个数或坐标?
试提出一个相关命题(或猜想)并开展研究,写出你的研究过程.[本小题将根据你提出的命题(或猜想)的完备程度和研究过程中体现的思维层次,给予不同的评分].

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+3ax2+b有极值,且极大值点与极小值点分别为A、B,又线段AB(不含端点)与函数f(x)图象交于点(1,0).
(1)求函数f(x)的解析式;
(2)设函数g(x)=2x2+4x-k,已知对任意x1、x2∈[-1,1],都有|f(x1)|≤|g(x2)|,求k的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A1(x1,y1),A2(x2,y2),…,An(xn,yn)是直线l:y=kx+b上的n个不同的点(n∈N*,k、b均为非零常数),其中数列{xn}为等差数列.
(1)求证:数列{yn}是等差数列;
(2)若点P是直线l上一点,且
OP
=a1
OA1
+a2
OA2
,求证:a1+a2=1;
(3)设a1+a2+…+an=1,且当i+j=n+1时,恒有ai=aj(i和j都是不大于n的正整数,且i≠j).试探索:在直线l上是否存在这样的点P,使得
OP
=a1
OA1
+a2
OA2
+…+an
OAn
成立?请说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,P是抛物线C:x2=2y上一点,F为抛物线的焦点,直线l过点P且与抛物线交于另一点Q,已知P(x1,y1),Q(x2,y2).
(1)若l经过点F,求弦长|PQ|的最小值;
(2)设直线l:y=kx+b(k≠0,b≠0)与x轴交于点S,与y轴交于点T
①求证:
|ST|
|SP|
+
|ST|
|SQ|
=|b|(
1
y1
+
1
y2
)

②求
|ST|
|SP|
+
|ST|
|SQ|
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题α:x1和x2是方程x2-mx-
94
=0
的两个实根,不等式a2-a-3≤|x1-x2|对任意实数m∈[-1,1]恒成立;命题β:不等式ax2+2x-1>0有解.
(Ⅰ)若命题α是真命题,求实数a的取值范围;
(Ⅱ)若命题α是真命题且命题β是假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案