精英家教网 > 高中数学 > 题目详情
若曲线y=f(x)在点(x0,f(x0))处的切线方程为y=2x-1,则(  )
分析:曲线y=f(x)在点(x0,f(x0))处的切线方程为y=2x-1,由导数的几何意义知f′(x0)=2,由此能求出结果.
解答:解:∵曲线y=f(x)在点(x0,f(x0))处的切线方程为y=2x-1,
∴由导数的几何意义知f′(x0)=2,
∴f′(x0)>0.
故选B.
点评:本题考查导数的几何意义的应用,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=alnx-
1x
,a∈R.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直,求a的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)当a=1,且x≥2时,证明:f(x-1)≤2x-5.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax
+lnx-1,a∈R

(1)若曲线y=f(x)在P(1,y0)处的切线平行于直线y=-x+1,求函数y=f(x)的单调区间;
(2)若a>0,且对x∈(0,2e]时,f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-1+
aex
(a∈R,e为自然对数的底数).
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(Ⅱ)求函数f(x)的极值;
(Ⅲ)当a=1的值时,若直线l:y=kx-1与曲线y=f(x)没有公共点,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x
+alnx-2(a>0).
(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间;
(Ⅱ)若对于任意?x∈(0,+∞)都有f(x)>2(a-1)成立,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a2
x2+(a+1)x+2ln(x-1)

(Ⅰ)若曲线y=f(x)在点(2,f(2))处的切线与直线2x-y+1=0平行,求出这条切线的方程;
(Ⅱ)讨论函数f(x)的单调区间;
(Ⅲ)若对于任意的x∈(1,+∞),都有f(x)<-2,求实数a的取值范围.

查看答案和解析>>

同步练习册答案