【题目】某海滨浴场一天的海浪高度
是时间
的函数,记作
,下表是某天各时的浪高数据:
| 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
| 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
(1)选用一个三角函数来近似描述这个海滨浴场的海浪高度
与时间
的函数关系;
(2)依据规定,当海浪高度不少于
时才对冲浪爱好者开放海滨浴场,请依据(1)的结论,判断一天内的
至
之间,有多少时间可供冲浪爱好者进行冲浪?
科目:高中数学 来源: 题型:
【题目】(题文)在直角坐标系
中,直线
的参数方程为
为参数)在以坐标原点
为极点,
轴的正半轴为极轴的极坐标系中,曲线
的极坐标方程为
.
(1)写出直线
的普通方程与曲线
的直角坐标方程;
(2)设点
.若直线
与曲线
相交于不同的两点
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个容器的盖子用一个正四棱台和一个球焊接而成,球的半径为R,正四棱台的上、下底面边长分别为2.5R和3R,斜高为0.6R
(1)求这个容器盖子的表面积(用R表示,焊接处对面积的影响忽略不记);
(2)若R=2cm,为盖子涂色时所用的涂料每0.4kg可以涂1m2,计算100个这样的盖子约需涂料多少kg(精确到0.1kg)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2α﹣4cosα=0.已知直线l的参数方程为
(
为参数),点M的直角坐标为
.
(1)求直线l和曲线C的普通方程;
(2)设直线l与曲线C交于A,B两点,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种出口产品的关税税率为
,市场价格
(单位:千元)与市场供应量
(单位:万件)之间近似满足关系式:
,其中
、
均为常数.当关税税率
时,若市场价格为5千元,则市场供应量约为1万件;若市场价格为7千元,则市场供应量约为2万件.
(1)试确定
、
的值;
(2)市场需求量
(单位:万件)与市场价格
近似满足关系式:
,当
时,市场价格称为市场平衡价格,当市场平衡价格不超过4千元时,试确定关税税率的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
,过
上一动点
作
轴,垂足为点
.当点
满足
时,点
的轨迹
恰是一个圆.
(1)求椭圆
的离心率;
(2)若与曲线
切于
点的直线
与椭圆
交于
,
两点,且当
轴时,
,求
的最大面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com