【题目】先把正弦函数y=sinx图象上所有的点向左平移
个长度单位,再把所得函数图象上所有的点的纵坐标缩短到原来的
倍(横坐标不变),再将所得函数图象上所有的点的横坐标缩短到原来的
倍(纵坐标不变),则所得函数图象的解析式是( )
A.y=2sin(
x+
)
B.y=
sin(2x﹣
)
C.y=2sin(
x﹣
)
D.y=
sin(2x+
)
【答案】D
【解析】解:将函数y=sinx的图象上所有的点向左平移
个单位,可得函数y=sin(x+
)的图象,
再把所得函数图象上所有的点的纵坐标缩短到原来的
倍(横坐标不变),得到的图象的函数解析式y=
sin(x+
),
再把所得图象上所有点的横坐标缩短到原来的
倍(纵坐标不变),得到的图象的函数解析式y=
sin(2x+
),
故选:D.
【考点精析】根据题目的已知条件,利用函数y=Asin(ωx+φ)的图象变换的相关知识可以得到问题的答案,需要掌握图象上所有点向左(右)平移
个单位长度,得到函数
的图象;再将函数
的图象上所有点的横坐标伸长(缩短)到原来的
倍(纵坐标不变),得到函数
的图象;再将函数
的图象上所有点的纵坐标伸长(缩短)到原来的
倍(横坐标不变),得到函数
的图象.
科目:高中数学 来源: 题型:
【题目】(本小题满分16分)已知
为实数,函数
,函数
.
(1)当
时,令
,求函数
的极值;
(2)当
时,令
,是否存在实数
,使得对于函数
定义域中的任意实数
,均存在实数
,有
成立,若存在,求出实数
的取值集合;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分10分)如图,在长方体
中,
,
,
与
相交于点
,点
在线段
上(点
与点
不重合).
![]()
(1)若异面直线
与
所成角的余弦值为
,求
的长度;
(2)若
,求平面
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数y=f(x)图像上不同两点A(x1 , y1),B(x2 , y2)处的切线的斜率分别是kA , kB , 规定φ(A,B)=
叫曲线y=f(x)在点A与点B之间的“弯曲度”,给出以下命题: (1.)函数y=x3﹣x2+1图像上两点A、B的横坐标分别为1,2,则φ(A,B)>
;
(2.)存在这样的函数,图像上任意两点之间的“弯曲度”为常数;
(3.)设点A、B是抛物线,y=x2+1上不同的两点,则φ(A,B)≤2;
(4.)设曲线y=ex上不同两点A(x1 , y1),B(x2 , y2),且x1﹣x2=1,若tφ(A,B)<1恒成立,则实数t的取值范围是(﹣∞,1);
以上正确命题的序号为(写出所有正确的)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知x0 , x0+
是函数f(x)=cos2(wx﹣
)﹣sin2wx(ω>0)的两个相邻的零点
(1)求
的值;
(2)若对
,都有|f(x)﹣m|≤1,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线C1的参数方程为:
(α为参数),以原点为极点,x轴的正半轴为极轴,并取与直角坐标系相同的长度单位,建立极坐标系,曲线C2的极坐标方程为:ρ=cosθ. (Ⅰ)求曲线C2的直角坐标方程;
(Ⅱ)若P,Q分别是曲线C1和C2上的任意一点,求|PQ|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】射击测试有两种方案,方案1:先在甲靶射击一次,以后都在乙靶射击;方案2:始终在乙靶射击,某射手命中甲靶的概率为
,命中一次得3分;命中乙靶的概率为
,命中一次得2分,若没有命中则得0分,用随机变量
表示该射手一次测试累计得分,如果
的值不低于3分就认为通过测试,立即停止射击;否则继续射击,但一次测试最多打靶3次,每次射击的结果相互独立。
(1)如果该射手选择方案1,求其测试结束后所得分
的分布列和数学期望E
;
(2)该射手选择哪种方案通过测试的可能性大?请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了了解学生对周末家庭作业量的态度,拟采用分层抽样的方法分别从高一、高二、高三的高中生中随机抽取一个容量为200的样本进行调查,已知从700名高一、高二学生中共抽取了140名学生,那么该校有高三学生名.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=cosωx(sinωx+
cosωx)(ω>0),如果存在实数x0 , 使得对任意的实数x,都有f(x0)≤f(x)≤f(x0+2016π)成立,则ω的最小值为( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com