精英家教网 > 高中数学 > 题目详情
如果数列的前n项和Sn=a1+a2+a3+…+an满足条件log2Sn=n,那么{an}( )
A.是公比为2的等比数列
B.是公比为的等比数列
C.是公差为2的等差数列
D.既不是等差数列,也不是等比数列
【答案】分析:由题意可得Sn=2n,由此可得通项公式,由此可判断是不是等差数列或等比数列.
解答:解:由题意可得:Sn=2n
故当n=1时,a1=S1=2,
当n≥2时,an=Sn-Sn-1=2n-2n-1=2n-1
当n=1时,上式不适合,故{an}不是等比数列;
又an+1-an=2n-2n-1=2n-1,不是常数,故{an}不是等差数列.
故选D
点评:本题考查等差数列和等比数列的定义,涉及由和求通项,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知由正数组成的两个数列{an},{bn},如果an,an+1是关于x的方程x2-2bn2x+anbnbn+1=0的两根.
(1)求证:{bn}为等差数列;
(2)已知a1=2,a2=6,分别求数列{an},{bn}的通项公式;
(3)求数{
bn2n
}的前n项和S

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为R,数列{an}满足an=f(an-1)(n∈N*且n≥2).
(Ⅰ)若数列{an}是等差数列,a1≠a2,且f(an)-f(an-1)=k(an-an-1)(k为非零常数,n∈N*且n≥2),求k的值;
(Ⅱ)若f(x)=kx(k>1),a1=2,bn=lnan(n∈N*),数列{bn}的前n项和为Sn,对于给定的正整数m,如果
S(m+1)nSmn
的值与n无关,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}的前n项和为Sn,且满足等式an+2Sn=3.
(1)能否在数列中找到按原来顺序成等差数列的任意三项,说明理由;
(2)能否从数列中依次抽取一个无限多项的等比数列,且使它的所有项和S满足
9
160
<S<
1
13
,如果这样的数列存在,这样的等比数列有多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•湛江二模)有一个翻硬币游戏,开始时硬币正面朝上,然后掷骰子根据下列①、②、③的规则翻动硬币:①骰子出现1点时,不翻动硬币;②出现2,3,4,5点时,翻动一下硬币,使另一面朝上;③出现6点时,如果硬币正面朝上,则不翻动硬币;否则,翻动硬币,使正面朝上.按以上规则,在骰子掷了n次后,硬币仍然正面朝上的概率记为Pn
(Ⅰ)求证:?n∈N*,点(Pn,Pn+1)恒在过定点(
5
9
5
9
),斜率为-
1
2
的直线上;
(Ⅱ)求数列{Pn}的通项公式Pn
(Ⅲ)用记号Sn→m表示数列{Pn-
5
9
}从第n项到第m项之和,那么对于任意给定的正整数k,求数列S1→k,Sk+1→2k,…,S(n-1)k+1→nk,…的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知由正数组成的两个数列{an},{bn},如果an,an+1是关于x的方程x2-2bn2x+anbnbn+1=0的两根.
(1)求证:{bn}为等差数列;
(2)已知a1=2,a2=6,分别求数列{an},{bn}的通项公式;
(3)求数{
bn
2n
}的前n项和S

查看答案和解析>>

同步练习册答案