精英家教网 > 高中数学 > 题目详情

定义在D上的函数,如果满足:常数,都有≤M成立,则称是D上的有界函数,其中M称为函数的上界.

(Ⅰ)试判断函数在[1,3]上是不是有界函数?请给出证明;

(Ⅱ)若已知质点的运动方程为,要使在上的每一时刻的瞬时速度是以M=1为上界的有界函数,求实数a的取值范围.

解:(Ⅰ)∵,当时,.

在[1,3]上是增函数.

    ∴当时,,即 -2≤≤26.

    ∴存在常数M=26,使得,都有≤M成立.

故函数是[1,3]上的有界函数.

(Ⅱ)∵. 由≤1,得≤1

 

    令,则.

     当时,有

在[0,+∞上单调递减.  

故当t=0 时,有

,当t→+∞时,→0,

,从而有≤0,且.  ∴0≤a≤1;

故所求a的取值范围为0≤a≤1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2007•揭阳二模)如图(1)示,定义在D上的函数f(x),如果满足:对?x∈D,?常数A,都有f(x)≥A成立,则称函数f(x)在D上有下界,其中A称为函数的下界.(提示:图(1)、(2)中的常数A、B可以是正数,也可以是负数或零)  

(Ⅰ)试判断函数f(x)=x3+
48
x
在(0,+∞)上是否有下界?并说明理由;
(Ⅱ)又如具有如图(2)特征的函数称为在D上有上界.请你类比函数有下界的定义,给出函数f(x)在D上有上界的定义,并判断(Ⅰ)中的函数在(-∞,0)上是否有上界?并说明理由;
(Ⅲ)若函数f(x)在D上既有上界又有下界,则称函数f(x)在D上有界,函数f(x)叫做有界函数.试探究函数f(x)=ax3+
b
x
(a>0,b>0a,b是常数)是否是[m,n](m>0,n>0,m、n是常数)上的有界函数?

查看答案和解析>>

科目:高中数学 来源: 题型:

如右图所示,定义在D上的函数f(x),如果满足:对?x∈D,常数A,都有f(x)≥A成立,则称函数f(x)在D上有下界,其中A称为函数的下界.(提示:图中的常数A可以是正数,也可以是负数或零)
(1)试判断函数f(x)=x3+
48
x
在(0,+∞)上是否有下界?并说明理由;
(2)已知某质点的运动方程为S(t)=at-2
t+1
,要使在t∈[0,+∞)上的每一时刻该质点的瞬时速度是以A=
1
2
为下界的函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•揭阳二模)如图(1)示,定义在D上的函数f(x),如果满足:对?x∈D,?常数A,都有f(x)≥A成立,则称函数f(x)在D上有下界,其中A称为函数的下界.(提示:图(1)、(2)中的常数A、B可以是正数,也可以是负数或零)

(Ⅰ)试判断函数f(x)=x3+
48
x
在(0,+∞)上是否有下界?并说明理由;
(Ⅱ)又如具有如图(2)特征的函数称为在D上有上界.请你类比函数有下界的定义,给出函数f(x)在D上有上界的定义,并判断(Ⅰ)中的函数在(-∞,0)上是否有上界?并说明理由;
(Ⅲ)已知某质点的运动方程为S(t)=at-2
t+1
,要使在t∈[0,+∞)上的每一时刻该质点的瞬时速度是以A=
1
2
为下界的函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分12)如右图所示,定义在D上的函数,如果满足:对常数A,都有成立,则称函数在D上有下界,其中A称为函数的下界.(提示:图中的常数A可以是正数,也可以是负数或零)

(1)试判断函数上是否有下界?并说明理由;

(2)已知某质点的运动方程为,要使在上的每一时刻该质点的瞬时速度是以为下界的函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年江苏省扬州中学高三(上)月考数学试卷(解析版) 题型:解答题

如右图所示,定义在D上的函数f(x),如果满足:对?x∈D,常数A,都有f(x)≥A成立,则称函数f(x)在D上有下界,其中A称为函数的下界.(提示:图中的常数A可以是正数,也可以是负数或零)
(1)试判断函数在(0,+∞)上是否有下界?并说明理由;
(2)已知某质点的运动方程为,要使在t∈[0,+∞)上的每一时刻该质点的瞬时速度是以为下界的函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案