【题目】已知椭圆
:
过点
与点
.
(1)求椭圆
的方程;
(2)设直线
过定点
,且斜率为
,若椭圆
上存在
,
两点关于直线
对称,
为坐标原点,求
的取值范围及
面积的最大值.
科目:高中数学 来源: 题型:
【题目】设关于某产品的明星代言费
(百万元)和其销售额
(百万元),有如下表的统计表格:
![]()
表中![]()
(1)在给出的坐标系
中,作出销售额
关于广告费
的回归方程的散点图,根据散点图指出:
哪一个适合作销售额
关于明星代言费
的回归方程(不需要说明理由);并求
关于
的回归方程(结果精确到0.1)
(2)已知这种产品的纯收益
(百万元)与
,
有如下关系:
,用(1)中的结果估计当
取何值时,纯收益
取最大值?
附:对于一组数据
其回归线
的斜率和截距的最小二乘估计分别为
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表为2015年至2018年某百货零售企业的年销售额
(单位:万元)与年份代码
的对应关系,其中年份代码
年份-2014(如:
代表年份为2015年)。
年份代码 | 1 | 2 | 3 | 4 |
年销售额 | 105 | 155 | 240 | 300 |
(1)已知
与
具有线性相关关系,求
关于
的线性回归方程,并预测2019年该百货零售企业的年销售额;
(2)2019年,美国为遏制我国的发展,又祭出“长臂管辖”的霸权行径,单方面发起对我国的贸易战,有不少人对我国经济发展前景表示担忧.此背景下,某调查平台为了解顾客对该百货零售企业的销售额能否持续增长的看法,随机调查了60为男顾客、50位女顾客,得到如下
列联表:
持乐观态度 | 持不乐观态度 | 总计 | |
男顾客 | 45 | 15 | 60 |
女顾客 | 30 | 20 | 50 |
总计 | 75 | 35 | 110 |
问:能否在犯错误的概率不超过0.05的前提下认为对该百货零售企业的年销售额持续增长所持的态度与性别有关?
参考公式及数据:回归直线方程
,
![]()
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 甲、乙二人比赛,甲胜的概率为
,则比赛5场,甲胜3场
B. 某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈
C. 随机试验的频率与概率相等
D. 天气预报中,预报明天降水概率为90%,是指降水的可能性是90%
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】麻团又叫煎堆,呈球形,华北地区称麻团,是一种古老的中华传统特色油炸面食,寓意团圆。制作时以糯米粉团炸起,加上芝麻而制成,有些包麻茸、豆沙等馅料,有些没有。一个长方体形状的纸盒中恰好放入4个球形的麻团,它们彼此相切,同时与长方体纸盒上下底和侧面均相切,其俯视图如图所示,若长方体纸盒的表面积为576
,则一个麻团的体积为_______
.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:若对定义域内任意x,都有
(a为正常数),则称函数
为“a距”增函数.
(1)若
,
(0,
),试判断
是否为“1距”增函数,并说明理由;
(2)若
,
R是“a距”增函数,求a的取值范围;
(3)若
,
(﹣1,
),其中k
R,且为“2距”增函数,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的一个焦点为
,且离心率为
.
(1)求椭圆方程;
(2)斜率为
的直线
过点F,且与椭圆交于
两点,P为直线
上的一点,
若
为等边三角形,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个正方体的平面展开图及该正方体的直观图的示意图如图所示.
![]()
(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)
(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.
(Ⅲ)证明:直线DF
平面BEG
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com