精英家教网 > 高中数学 > 题目详情

1.已知三棱锥A—BCD中,BC = CD = 1,AB⊥面BCD,点EF分别在AC、AD上,使面BEFACD,且EFCD,则平面BEF与平面BCD所成的二面角的正弦值为(    )

A.                 B.                  C.                      D. 

 

【答案】

B

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三棱锥A-BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F分别是直线AC,AD上的点,且
AE
AC
=
AF
AD
=λ.
(1)求二面角B-CD-A平面角的余弦值
(2)当λ为何值时,平面BEF⊥平面ACD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥A-BCD中,AB=CD,且直线AB与CD成60°角,点M、N分别是BC、AD的中点,则直线AB和MN所成的角是
60°
60°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥A-BCD的各棱长均为1,且E是BC的中点,则
AE
CD
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1992•云南)已知三棱锥A-BCD的体积是V,棱BC的长是a,面ABC和面DBC的面积分别是S1和S2.设面ABC和面DBC所成的二面角是α,那么sinα=
3aV
2S1S2
3aV
2S1S2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•大连一模)已知三棱锥A-BCD及其三视图如图所示.
(I)若DE⊥AB于E,DE⊥AC于F,求证:AC⊥平面DEF;
(Ⅱ)求二面角B-AC-D的大小.

查看答案和解析>>

同步练习册答案