精英家教网 > 高中数学 > 题目详情

【题目】在长方体ABCD﹣A1B1C1D1中,AA1=2AB=2BC,E,F,E1分别是棱AA1 , BB1 , A1B1的中点.
(1)求证:CE∥平面C1E1F;
(2)求证:平面C1E1F⊥平面CEF.

【答案】
(1)证明:取CC1的中点G,连接B1G交C1F于点F1,连接E1F1,A1G,FG,

∵F是BB1的中点,BCC1B1是矩形,

∵四边形FGC1B1也是矩形,

∴FC1与B1G相互平分,即F1是B1G的中点.

又E1是A1B1的中点,∴A1G∥E1F1

又在长方体中,AA1綊CC1,E,G分别为AA1,CC1的中点,

∴A1E綊CG,∴四边形A1ECG是平行四边形,

∴A1G∥CE,∴E1F1∥CE.

∵CE平面C1E1F,E1F1平面C1E1F,

∴CE∥平面C1E1F


(2)证明:∵长方形BCC1B1中,BB1=2BC,F是BB1的中点,

∴△BCF、△B1C1F都是等腰直角三角形,

∴∠BFC=∠B1FC1=45°,

∴∠CFC1=180°﹣45°﹣45°=90°,

∴C1F⊥CF.

∵E,F分别是矩形ABB1A1的边AA1,BB1的中点,

∴EF∥AB.

又AB⊥平面BCC1B1,又C1F平面BCC1B1

∴AB⊥C1F,∴EF⊥C1F.

又CF∩EF=F,∴C1F⊥平面CEF.

∵C1F平面C1E1F,∴平面C1E1F⊥平面CEF.


【解析】(1)要求证:CE∥平面C1E1F,取CC1的中点G,连接B1G交C1F于点F1,连接E1F1,A1G,FG,证明E1F1∥CE即可;(2)要证:平面C1E1F⊥平面CEF,证明C1F⊥CF,EF⊥C1F即可.
【考点精析】解答此题的关键在于理解直线与平面平行的判定的相关知识,掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行,以及对平面与平面垂直的判定的理解,了解一个平面过另一个平面的垂线,则这两个平面垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2﹣x+2a﹣1(a>0).
(1)若f(x)在区间[1,2]为单调增函数,求a的取值范围;
(2)设函数f(x)在区间[1,2]上的最小值为g(a),求g(a)的表达式;
(3)设函数 ,若对任意x1 , x2∈[1,2],不等式f(x1)≥h(x2)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为角A,B,C所对的边.已知sinC= sinB,c=2,cosA=
(Ⅰ)求a的值;
(Ⅱ)求sin(2A﹣ )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)将直线l: (t为参数)化为极坐标方程;
(2)设P是(1)中直线l上的动点,定点A( ),B是曲线ρ=﹣2sinθ上的动点,求|PA|+|PB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,记抛物线y=x﹣x2与x轴所围成的平面区域为M,该抛物线与直线y=kx(k>0)所围成的平面区域为N,向区域M内随机抛掷一点P,若点P落在区域N内的概率为 ,则k的值为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)若m=2,求f(x)的最小值;
(2)若f(x)恰有2个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上的偶函数,且f(2+x)=f(2﹣x),当x∈[﹣2,0]时,f(x)=( x﹣1,若在区间(﹣2,6)内关于x的方程f(x)﹣log a(x+2)=0,恰有4个不同的实数根,则实数a(a>0,a≠1)的取值范围是( )
A.( ,1)
B.(1,4)
C.(1,8)
D.(8,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网店经营的一种商品进价是每件10元,根据一周的销售数据得出周销量P(件)与单价x(元)之间的关系如图折线所示,该网店与这种商品有关的周开支均为25元.
(I)根据周销量图写出周销量P(件)与单价x(元)之间的函数关系式;
(Ⅱ)写出周利润y(元)与单价x(元)之间的函数关系式;当该商品的销售价格为多少元时,周利润最大?并求出最大周利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为A、B、C的对边,且满足2(a2﹣b2)=2accosB+bc
(1)求A
(2)D为边BC上一点,CD=3BD,∠DAC=90°,求tanB.

查看答案和解析>>

同步练习册答案