【题目】已知斜三棱柱
的底面是直角三角形,
,侧棱与底面所成角为
,点
在底面上身影
落在
上.
![]()
(1)求证:
平面
;
(2)若点
恰为
中点,且
,求
的大小;
(3)若
,且当
时,求二面角
的大小.
科目:高中数学 来源: 题型:
【题目】选修4
4:坐标系与参数方程
在直角坐标系
中,直线
经过点
,其倾斜角为
,在以原点
为极点,
轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线C的极坐标方程为
.
(Ⅰ)若直线
与曲线C有公共点,求
的取值范围;
(Ⅱ)设
为曲线C上任意一点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.
(1)若BA,求实数m的取值范围;
(2)当x∈R时,不存在元素x使x∈A与x∈B同时成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究型学习小组调查研究学生使用智能手机对学习的影响.部分统计数据如下表:
使用智能手机 | 不使用智能手机 | 总计 | |
学习成绩优秀 | 4 | 8 | 12 |
学习成绩不优秀 | 16 | 2 | 18 |
总计 | 20 | 10 | 30 |
附表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
经计算
的观测值为10,则下列选项正确的是( )
A. 有99.5%的把握认为使用智能手机对学习有影响
B. 有99.5%的把握认为使用智能手机对学习无影响
C. 在犯错误的概率不超过0.001的前提下认为使用智能手机对学习有影响
D. 在犯错误的概率不超过0.001的前提下认为使用智能手机对学习无影响
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,海上有
、
两个小岛相距
,船
将保持观望
岛和
岛所成的视角为
,现从船
上派下一只小艇沿
方向驶至
处进行作业,且
.设
.
![]()
(1)用
分别表示
和
,并求出
的取值范围;
(2)0晚上小艇在
处发出一道强烈的光线照射
岛,
岛至光线
的距离为
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究型学习小组调查研究学生使用智能手机对学习的影响.部分统计数据如下表:
使用智能手机 | 不使用智能手机 | 总计 | |
学习成绩优秀 | 4 | 8 | 12 |
学习成绩不优秀 | 16 | 2 | 18 |
总计 | 20 | 10 | 30 |
附表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
经计算
的观测值为10,则下列选项正确的是( )
A. 有99.5%的把握认为使用智能手机对学习有影响
B. 有99.5%的把握认为使用智能手机对学习无影响
C. 在犯错误的概率不超过0.001的前提下认为使用智能手机对学习有影响
D. 在犯错误的概率不超过0.001的前提下认为使用智能手机对学习无影响
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆
的中心在坐标原点,焦点在
轴上,焦点到短轴端点的距离为2,离心率为
.
(Ⅰ)求该椭圆的方程;
(Ⅱ)若直线
与椭圆
交于
,
两点且
,是否存在以原点
为圆心的定圆与直线
相切?若存在求出定圆的方程;若不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
是实数,
,
(1)若函数
为奇函数,求
的值;
(2)试用定义证明:对于任意
,
在
上为单调递增函数;
(3)若函数
为奇函数,且不等式
对任意
恒成立,求实数
的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com