【题目】为了弘扬民族文化,某中学举行了“我爱国学,传诵经典”考试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示.
![]()
(1)若该所中学共有2000名学生,试利用样本估计全校这次考试中优秀生人数;
(2)(i)试估计这次参加考试的学生的平均成绩(同一组数据用该组区间的中点值作代表);
(ii)若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人赠送一套国学经典学籍,试求恰好抽中2名优秀生的概率.
【答案】(1)600;(2)(i)72.5;(ii)
.
【解析】试题分析:(1)由频率分布直方图,频率=(频数)/(样本容量),通过
的频率,可求得优秀人数。(2)由平均数公式求得平均成绩,)由分层抽样抽起成绩在
,
,
间分别抽取了3人,2人,1人.再由枚举法列举出6选3的所有情况,最后用古典概型公式求得概率。
试题解析;(1)由直方图可知,样本中数据落在
的频率为
,
则估计全校这次考试中优秀生人数为
.
(2)(i)设样本数据的平均数为
,
则
,
则估计所有参加考试的学生的平均成绩为72.5.
(ii)由分层抽样知识可知,成绩在
,
,
间分别抽取了3人,2人,1人.
记成绩在
的3人为
,
,
,成绩在
的2人为
,
,成绩在
的1人为
,
则从这6人中抽取3人的所有可能结果有
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
共20种,
其中恰好抽中2名优秀生的结果有
,
,
,
,
,
,
,
,
共9种,
所以恰好抽中2名优秀生的概率为
.
科目:高中数学 来源: 题型:
【题目】若椭圆
:
上有一动点
,
到椭圆
的两焦点
,
的距离之和等于
,
到直线
的最大距离为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点
的直线
与椭圆
交于不同两点
、
,
(
为坐标原点)且
,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a1 , a2 , …,an为1,2,…,n按任意顺序做成的一个排列,fk是集合{ai|ai<ak , i>k}元素的个数,而gk是集合{ai|ai>ak , i<k}元素的个数(k=1,2,…,n),规定fn=g1=0,例如:对于排列3,1,2,f1=2,f2=0,f3=0
(I)对于排列4,2,5,1,3,求![]()
![]()
(II)对于项数为2n﹣1 的一个排列,若要求2n﹣1为该排列的中间项,试求![]()
的最大值,并写出相应得一个排列
(Ⅲ)证明![]()
=![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,曲线
的参数方程为
(
为参数,
),以直角坐标系的原点为极点,以
轴的正半轴为极轴建立坐标系,圆
的极坐标方程为
.
(1)求圆
的直角坐标方程(化为标准方程)及曲线
的普通方程;
(2)若圆
与曲线
的公共弦长为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C方程:
+
=1(a>b>0),M(x0 , y0)是椭圆C上任意一点,F(c,0)是椭圆的右焦点.
(1)若椭圆的离心率为e,证明|MF|=a﹣ex0;
(2)已知不过焦点F的直线l与圆x2+y2=b2相切于点Q,并与椭圆C交于A,B两点,且A,B两点都在y轴的右侧,若a=2,求△ABF的周长.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如图.记成绩不低于90分者为“成绩优秀”.
![]()
(1)在乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的2个均“成绩优秀”的概率;
(2)由以上统计数据作出列联表,并判断能否在犯错误的概率不超过0.1的前提下认为:“成绩优秀”与教学方式有关.
| 0.400 | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 |
| 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
参考公式:
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查患胃病是否与生活规律有关,在某地对
名
岁以上的人进行了调查,结果是:患胃病者生活不规律的共
人,患胃病者生活规律的共
人,未患胃病者生活不规律的共
人,未患胃病者生活规律的共
人.
(1)根据以上数据列出
列联表;
(2)能否在犯错误的概率不超过
的前提下认为“
岁以上的人患胃病与否和生活规律有关系?”
附:
,其中
.
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(管道构成Rt△FHE,H是直角项点)来处理污水.管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=
米,记∠BHE=
.
![]()
(1)试将污水净化管道的长度L表示为
的函数,并写出定义域;
(2)当
取何值时,污水净化效果最好?并求出此时管道的长度L.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com