精英家教网 > 高中数学 > 题目详情
(2013•德州一模)已知函数y=f(x-1)的图象关于直线x=1对称,且当x∈(-∞,0)时,f(x)+xf′(x)<0成立若a=(20.2)•f(20.2),b=(1n2)•f(1n2),c=(1og
1
2
1
4
)•f(1og
1
2
1
4
),则a,b,c的大小关系是(  )
分析:利用函数y=f(x-1)的图象关于直线x=1对称,可得函数y=f(x)的图象关于y轴对称,是偶函数.
令g(x)=xf(x),利用已知当x∈(-∞,0)时,g′(x)=f(x)+xf′(x)<0,可得函数g(x)在x∈(-∞,0)单调递减,
进而得到函数g(x)在(0,+∞)上单调递减.再根据lo
g
1
4
1
2
=2>20.2>1>ln2>0.即可得到a,b,c的大小.
解答:解:∵函数y=f(x-1)的图象关于直线x=1对称,∴函数y=f(x)的图象关于y轴对称,是偶函数.
令g(x)=xf(x),则当x∈(-∞,0)时,g′(x)=f(x)+xf′(x)<0,∴函数g(x)在x∈(-∞,0)单调递减,
因此函数g(x)在(0,+∞)上单调递减.
lo
g
1
4
1
2
=2>20.2>1>ln2>0.
∴c<a<b.
故选B.
点评:熟练掌握轴对称、偶函数的性质、利用导数研究函数的单调性、对数的运算性质等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•德州一模)命题“?x∈R,x2-2x=0”的否定是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州一模)在△ABC中,角A,B,C的对边分别为a,b,c,已知角A=
π
3
,sinB=3sinC.
(1)求tanC的值;
(2)若a=
7
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州一模)若正项数列{an}满足1gan+1=1+1gan,且a2001+a2002+a2003+…a2010=2013,则a2011+a2012+a2013+…a2020的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州一模)直线y=-
3
3
x+m与圆x2+y2=1在第一象限内有两个不同的交点,则m取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州一模)设集合A={x|x2-5x-6<0},B={x|5≤x≤7},则A∩B=(  )

查看答案和解析>>

同步练习册答案