精英家教网 > 高中数学 > 题目详情
四棱锥P-ABCD中,PA⊥面ABCD,底面ABCD为菱形,且有AB=1,AP=
2
,∠BAD=120°,E为PC中点.
(Ⅰ)证明:AC⊥面BED;
(Ⅱ)求二面角E-AB-C的平面角的余弦值.
分析:(I)因为菱形的对角线互相垂直,所以AC⊥BD,再由△PAC的中位线,得到EO∥PA,结合PA⊥面ABCD,所以EO⊥面ABCD,从而AC⊥EO.最后根据直线与平面垂直的判定定理,得到AC⊥面BED;
(II)以A为原点,AD、AP所在直线分别为y轴、z轴,建立如图所示坐标系,则可得到A、B、C、E各点的坐标,从而得到向量
AB
AC
AE
的坐标,然后利用垂直向量数量积为零的方法,分别求出平面ABE和平面ABC的一个法向量,结合空间向量的夹角公式计算出它们的夹角的余弦值.最后根据题意,二面角E-AB-C是锐二面角,得到二面角E-AB-C平面角的余弦值为余两个法向量夹角余弦的绝对值.
解答:解:(Ⅰ)设O为底面ABCD的中心,连接EO,
∵底面ABCD为菱形,∴AC⊥BD
∵△PAC中,E、O分别是PC、PA的中点
∴EO∥PA
又∵PA⊥面ABCD,
∴EO⊥面ABCD
∵AC?面ABCD,∴AC⊥EO
又∵BD、EO是平面BED内的两条相交直线
∴AC⊥面BED(6分)
(Ⅱ)以A为原点,AD、AP所在直线分别为y轴、z轴,建立如图所示坐标系,则可得A(0,0,0),B(
3
2
,-
1
2
,0),C(
3
2
1
2
,0),E(
3
4
1
4
2
2
)

AB
=(
3
2
,-
1
2
,0),
AE
=(
3
4
1
4
2
2
),
AC
=(
3
2
1
2
,0)
(8分)
n1
=(x1y1z1)
是平面ABE一个法向量
n1
AB
=x1
3
2
+y1•(-
1
2
)+z1•0=0
n1
AE
=x1
3
4
+y1
1
4
+z1
2
2
=0     
,解得
y1=
3
x1
z1=-
6
2
x1

所以取x1=1,y1=
3
z1=-
6
2
,可得
n1
=(1,
3
,-
6
2
)

因为PA⊥平面ABC,所以向量
PA
即为平面ABC的一个法向量,设
PA
=
n2
=(0,0,
2
)
(10分)
cos<n1n2>=
n1
n2
|n1|
|n2|
=
-
6
2
×
2
 
  1+3+
3
2
2
=-
33
11

根据题意可知:二面角E-AB-C是锐二面角,其余弦值等于|cos<n1,n2>|=
33
11

∴二面角E-AB-C的平面角的余弦值为
33
11
.(12分)
点评:本题给出底面为菱形,一条侧棱垂直于底面的四棱锥,证明线面垂直并且求二面角所成角的余弦之值,着重考查了线面垂直的判定与性质和用空间向量求平面间的夹角的知识点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PD、PC、BC的中点.
(I)求证:PA∥平面EFG;
(II)求平面EFG⊥平面PAD;
(III)若M是线段CD上一点,求三棱锥M-EFG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上海)如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点,已知AB=2,AD=2
2
,PA=2,求:
(1)三角形PCD的面积;
(2)异面直线BC与AE所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,且AD∥BC,∠ABC=∠PAD=90°,侧面PAD⊥底面ABCD,若PA=AB=BC=
12
,AD=1.
(I)求证:CD⊥平面PAC
(II)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°,M为AB的中点.
(1)求证:BC∥平面PMD;
(2)求证:PC⊥BC;
(3)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为菱形,其中PA=PD=AD=2,∠BAD=60°,Q为AD的中点.
(1)求证:PA∥平面MDB;
(2)求证:AD⊥平面PQB;
(3)若平面PAD⊥平面ABCD,且M为PC的中点,求四棱锥M-ABCD的体积.

查看答案和解析>>

同步练习册答案