如图,过抛物线
的对称轴上任一点
作直线与抛物线交于
、
两点,点Q是点P关于原点的对称点.![]()
(1)设
,证明:
;
(2)设直线AB的方程是
,过
、
两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.
(1)详见解析.(2)
.
解析试题分析:(1)将直线与抛物线的方程联立,消去y,得到二次方程
,应用设而不求,整体代换思想,证明
,进而证明
;(2)将直线与抛物线的方程联立,解出
两点的坐标,求出抛物线在点
处的切线斜率,则圆心与点
连线的斜率为切线斜率的负倒数,得到方程①,再将
两点的坐标代入到圆的方程中,得到方程②,解方程得到圆心坐标及半径,解出圆的方程.
试题解析: (1) 由题意,可设直线
的方程为
,代入抛物线方程
得
①
设
、
两点的坐标分别是
,则
是方程①的两根,所以![]()
由
得
,又点Q是点P关于原点的对称点,故点Q的坐标为
,从而![]()
![]()
![]()
![]()
所以![]()
(2) 由
得
的坐标分别为![]()
抛物线
在点A处切线的斜率为3.
设圆C的方程是
,则![]()
解之得![]()
![]()
故,圆C的方程是![]()
考点:直线与圆锥曲线的位置关系,用数量积表示向量垂直.
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,直线
与以原点为圆心、椭圆
的短半轴长为半径的圆
相切.![]()
(1)求椭圆
的方程;
(2)如图,
、
、
是椭圆
的顶点,
是椭圆
上除顶点外的任意点,直线
交
轴于点
,直线
交
于点
,设
的斜率为
,
的斜率为
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,直线
与以原点为圆心、以椭圆
的短半轴长为半径的圆
相切.
(1)求椭圆
的方程;
(2)设椭圆
的左焦点为
,右焦点为
,直线
过点
,且垂直于椭圆的长轴,动直线
垂直于
,垂足为点
,线段
的垂直平分线交
于点
,求点
的轨迹
的方程;
(3)设
与
轴交于点
,不同的两点
在
上(
与
也不重合),且满足
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的中心在坐标原点,右准线为
,离心率为
.若直线
与椭圆
交于不同的两点
、
,以线段
为直径作圆
.
(1)求椭圆
的标准方程;
(2)若圆
与
轴相切,求圆
被直线
截得的线段长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
知椭圆
的左右焦点为F1,F2,离心率为
,以线段F1 F2为直径的圆的面积为
, (1)求椭圆的方程;(2) 设直线l过椭圆的右焦点F2(l不垂直坐标轴),且与椭圆交于A、B两点,线段AB的垂直平分线交x轴于点M(m,0),试求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
的上、下顶点分别为
,点
在椭圆上,且异于点
,直线
与直线
分别交于点
,![]()
(Ⅰ)设直线
的斜率分别为
,求证:
为定值;
(Ⅱ)求线段
的长的最小值;
(Ⅲ)当点
运动时,以
为直径的圆是否经过某定点?请证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
的焦点为
,点
是抛物线上的一点,且其纵坐标为4,
.
(Ⅰ)求抛物线的方程;
(Ⅱ) 设点
是抛物线上的两点,
的角平分线与
轴垂直,求
的面积最大时直线
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com