精英家教网 > 高中数学 > 题目详情
若抛物线与圆x2+y2-2ax+a2-1=0有且只有三个公共点,则a的取值范围是( )
A.-1<a<1
B.
C.
D.a=1
【答案】分析:圆x2+y2-2ax+a2-1=0化为:(x-a)2+y2=1,圆心为(a,0),在x轴上.由对称性知道抛物线与圆相切,再由半径r=1,能求出a.
解答:解:圆x2+y2-2ax+a2-1=0化为:(x-a)2+y2=1,
圆心为(a,0),在x轴上.
由对称性知道抛物线与圆相切,
而半径r=1,
所以a=1,或a=-1,
检验知道a=1符合题意,
所以a=1.
故选D.
点评:本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到圆的性质及直线与椭圆的相关知识,解题时要注意对称性的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C:x2=2py(p>0)的焦点F与P(2,-1)关于直线l:x-y-2=0对称,中心在坐标原点的椭圆经过两点M(1,
7
2
),N(-
2
6
2
),且抛物线与椭圆交于两点A(xA,yA)和B(xB,yB),且xA<xB
(1)求出抛物线方程与椭圆的标准方程;
(2)若直线l′与抛物线相切于点A,试求直线l′与坐标轴所围成的三角形的面积;
(3)若(2)中直线l′与圆x2-2mx+y2+2y+m2-
24
25
=0恒有公共点,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•丽水一模)已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1),
(Ⅰ)求抛物线的标准方程;
(Ⅱ)与圆x2+(y+1)2=1相切的直线l:y=kx+t交抛物线于不同的两点M,N,若抛物线上一点C满足
OC
=λ(
OM
+
ON
)
(λ>0),求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州一模)已知F1,F2分别为椭圆C1
x2
b2
+
y2
a2
=1(a>b>0)的上下焦点,其F1是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF2|=
3
5

(1)试求椭圆C1的方程;
(2)与圆x2+(y+1)2=1相切的直线l:y=k(x+t)(t≠0)交椭圆于A,B两点,若椭圆上一点P满足
OA
+
OB
OP
,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安庆模拟)已知抛物线C1:x2=y,圆C2:x2+(y-2)2=1的圆心为M,点P在抛物线C1上,设点P坐标(x0,x02),且x0≠0,x0≠±1,过点P作圆C2的两条切线,并且分别交抛物线C1于A、B两点.
(1)设PA、PB的斜率分别为k1、k2,试求出k1+k2关于x0的表达式;
(2)若
PM
AB
=0
时,求x0的值;
(3)若x0=-2,求证:直线AB与圆C2相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知以动点P为圆心的圆与直线y=-
1
20
相切,且与圆x2+(y-
1
4
2=
1
25
外切.
(Ⅰ)求动P的轨迹C的方程;
(Ⅱ)若M(m,m1),N(n,n1)是C上不同两点,且 m2+n2=1,m+n≠0,直线L是线段MN的垂直平分线.
    (1)求直线L斜率k的取值范围;
    (2)设椭圆E的方程为
x2
2
+
y2
a
=1(0<a<2).已知直线L与抛物线C交于A、B两个不同点,L与椭圆E交于P、Q两个不同点,设AB中点为R,PQ中点为S,若
OR
OS
=0,求E离心率的范围.

查看答案和解析>>

同步练习册答案