![]()
图24
(1)求AB、BC的长度各是多少;
(2)若⊙O内切于以F、E、B、C为顶点的四边形,求⊙O的面积.
思路分析:考察所给的条件,翻折△BCE,则△CBE≌△CFE,这样图形中提供了很多的线段相等、角相等.
解:(1)连结CE、CF、EF,设BE =5x,EA =3x.?
∵四边形ABCD是矩形,?
∴AB =CD =8x,AD =BC,∠B =∠A =∠D =90°.?
∵△CBE≌△CFE,?
∴EF =5x,FC=BC,?∠CFE =90°.??
∵∠AEF +∠EFC+∠DFC=180°,?
∴∠AFE +∠DFC=90°.?
又∵∠AEF +∠AFE =90°,∠AEF =∠DFC,?
∴sin∠AEF =sin∠DFC,即
=
.?
∴
=
,则FC =10x.?
∴
=
=
.?
∴x =3.∴AB =24,BC =30.?
![]()
(2)∵CE平分∠FCB和∠FEB,∴O在EC上.?
设⊙O和BC切于M,和AB切于N,连结OM、ON,设⊙O的半径为r,?
∴OM⊥BC,ON⊥AB.∴OM∥AB,ON∥BC.?
∴OM =BN =ON =BM =r.?
∴
=
,即
=
.∴r =10.?
∴⊙O的面积为100π.
科目:高中数学 来源: 题型:
| CE |
| CA |
| CF |
| CB |
| ||
| 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:
求证:PD =PE.
![]()
图1-24
查看答案和解析>>
科目:高中数学 来源: 题型:
(选修4-4:坐标系与参数方程) (本小题满分10分)
在直角坐标系xoy中,直线
的参数方程为
(t为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为
.
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线
交于点A、B,若点P的坐标为
,求|PA|+|PB|.
23(本小题满分10分)
已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,
,N为AB上一点,AB=4AN, M、S分别为PB,BC的中点.以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立如图空间直角坐标系.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.
24.(本小题满分10分)
将一枚硬币连续抛掷
次,每次抛掷互不影响. 记正面向上的次数为奇数的概率为
,正面向上的次数为偶数的概率为
.
(Ⅰ)若该硬币均匀,试求
与
;
(Ⅱ)若该硬币有暇疵,且每次正面向上的概率为
,试比较
与
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
(选修4-4:坐标系与参数方程) (本小题满分10分)
在直角坐标系xoy中,直线
的参数方程为
(t为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为
.
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线
交于点A、B,若点P的坐标为
,求|PA|+|PB|.
23(本小题满分10分)
已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,
,N为AB上一点,AB=4AN, M、S分别为PB,BC的中点.以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立如图空间直角坐标系.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.
24.(本小题满分10分)
将一枚硬币连续抛掷
次,每次抛掷互不影响. 记正面向上的次数为奇数的概率为
,正面向上的次数为偶数的概率为
.
(Ⅰ)若该硬币均匀,试求
与
;
(Ⅱ)若该硬币有暇疵,且每次正面向上的概率为
,试比较
与
的大小.
查看答案和解析>>
科目:高中数学 来源:2011届湖南省嘉积中学高三上学期质量检测数学理卷 题型:解答题
选作题,请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分,每道题满分10分)
22、选修4—1:几何证明选讲
如图,△ABC的角平分线AD的延长线交于的外按圆于点E。
(I)证明:△ABC∽△ADC
(II)若△ABC的面积为
AD·AE,求∠BAC的大小。![]()
23、选修4—4:坐标系与参数方程
已知半圆C的参数方程![]()
为参数且(0≤
≤
)
P为半圆C上一点,A(1,0)O为坐标原点,点M在射线OP上,线段OM与 的长度均为
。
(I)求以O为极点,
轴为正半轴为极轴建立极坐标系求点M的极坐标。
(II)求直线AM的参数方程。
24、选修4—5,不等式选讲
已知函数
![]()
(I)若不等式
的解集为
求a值。
(II)在(I) 条件下,若
对一切实数
恒成立,求实数m的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com