精英家教网 > 高中数学 > 题目详情

如图,在四棱柱ABCD-A1B1C1D1中,D1D⊥底面ABCD,底面ABCD是正方形,且AB=1,D1D=

(1)求直线D1B与平面ABCD所成角的大小;

(2)求证:AC⊥平面BB1D1D.

 

【答案】

(1)45º;(2)利用线线垂直证明线面垂直

【解析】

试题分析:(1)因为D1D⊥面ABCD,所以BD为直线B D1在平面ABCD内的射影,

所以∠D1BD为直线D1B与平面ABCD所成的角,    2分

又因为AB=1,所以BD=,在Rt△D1DB中,

所以∠D1BD=45º,所以直线D1B与平面ABCD所成的角为45º;    4分

(2)明:因为D1D⊥面ABCD,AC在平面ABCD内,所以D1D⊥AC,

又底面ABCD为正方形,所以AC⊥BD, 6分

因为BD与D1D是平面BB1D1D内的两条相交直线,

所以AC⊥平面BB1D1D. 8分

考点:本题考查了空间中的线面关系

点评:此类问题常考查空间中平行关系与垂直关系的证明以及空间角、几何体体积的计算,这是立体几何的重点内容.证明的关键是熟练掌握并灵活运用相关的判定定理与性质定理

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,AA1=AB=2,四棱锥B-AA1C1D的体积为3.
(1)求证:AB1∥平面BC1D;
(2)求直线A1C1与平面BDC1所成角的正弦值;
(3)求二面角C-BC1-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱柱ABC-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是菱形,∠DAB=60°,AA1=4,AB=2,点E在棱CC1上,点E是棱C1C上一点.
(1)求证:无论E在任何位置,都有A1E⊥BD
(2)试确定点E的位置,使得A1-BD-E为直二面角,并说明理由.
(3)当E为CC1中点时,求四面体A1-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱柱ABC-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是菱形,∠DAB=60°,AA1=4,AB=2,点E在棱CC1上,点E是棱C1C上一点.
(1)求证:无论E在任何位置,都有A1E⊥BD
(2)试确定点E的位置,使得A1-BD-E为直二面角,并说明理由.
(3)试确定点E的位置,使得四面体A1-BDE体积最大.并求出体积的最大值.

查看答案和解析>>

科目:高中数学 来源:四川省仁寿一中2012届高三12月月考数学理科试题 题型:044

如图,在四棱柱ABC-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是菱形,∠DAB=60°,AA1=4,AB=2,点E在棱CC1上,点F是棱C1D1的中点.

(1)若点E是棱CC1的中点,求证:EF∥平面A1BD;

(2)试确定点E的位置,使得A1-BD-E为直二面角,并说明理由.

查看答案和解析>>

科目:高中数学 来源:四川省仁寿一中2012届高三12月月考数学文科试题 题型:044

如图,在四棱柱ABC-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是菱形,∠DAB=60°,AA1=4,AB=2,点E在棱CC1上,点F是棱C1D1的中点.

(1)若点E是棱CC1的中点,求证:EF∥平面A1BD;

(2)试确定点E的位置,使得A1-BD-E为直二面角,并说明理由.

查看答案和解析>>

同步练习册答案