【题目】设直线系M:xcosθ+(y﹣1)sinθ=1(0≤θ≤2π),对于下列说法:
(1)M中所有直线均经过一个定点;
(2)存在一个圆与所有直线不相交;
(3)对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上;
(4)M中的直线所能围成的正三角形面积都相等.
其中说法正确的是(填序号).
【答案】(2)、(3)
【解析】解:(1)由直线系M:xcosθ+(y﹣1)sinθ=1(0≤θ≤2π),
可令
,
消去θ可得 x2+(y﹣1)2=1,故 直线系M表示圆 x2+(y﹣1)2=1 的
切线的集合,故(1)不正确.(2)因为xcosθ+(y﹣1)sinθ=1所以点P(0,1)到M中每条直线的距离d=
=1,
即M为圆C:x2+(y﹣1)2=1的全体切线组成的集合,
所以存在圆心在(0,1),
小于1的圆与M中所有直线均不相交,故(2)正确;(3)由于圆 x2+(y﹣1)2=1 的外切正n 边形,所有的边都在直线系M中,
故(3)正确.(4)M中的直线所能围成的正三角形的边长不一等,故它们的面积不一定相等,
如图中等边三角形ABC和 ADE面积不相等,故(4)不正确.
综上,正确的命题是 (2)、(3),
所以答案是:(2)、(3).
科目:高中数学 来源: 题型:
【题目】如图,已知直三棱柱ABC﹣A1B1C1 , 点P、Q分别在棱AA1和CC1上,AP=C1Q,则平面BPQ把三棱柱分成两部分的体积比为( ) ![]()
A.2:1
B.3:1
C.3:2
D.4:3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为( ) ![]()
A.(kπ﹣
,kπ+
,),k∈z
B.(2kπ﹣
,2kπ+
),k∈z
C.(k﹣
,k+
),k∈z
D.(
,2k+
),k∈z
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角△ABC中,∠ACB=30°,∠B=90°,D为AC中点(左图),将∠ABD沿BD折起,使得AB⊥CD(右图),则二面角A﹣BD﹣C的余弦值为( ) ![]()
A.﹣ ![]()
B.![]()
C.﹣ ![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且a1+a5=17.
(1)若{an}还同时满足: ①{an}为等比数列;②a2a4=16;③对任意的正整数n,a2n<a2n+2 , 试求数列{an}的通项公式.
(2)若{an}为等差数列,且S8=56. ①求该等差数列的公差d;②设数列{bn}满足bn=3nan , 则当n为何值时,bn最大?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,将正六边形ABCDEF中的一半图形ABCD绕AD翻折到AB1C1D,使得∠B1AF=60°.G是BF与AD的交点.
(Ⅰ)求证:平面ADEF⊥平面B1FG;
(Ⅱ)求直线AB1与平面ADEF所成角的正弦值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】空间四边形ABCD的对角线AC=10,BD=6,M、N分别为AB、CD的中点,MN=7,则异面直线AC和BD所成的角等于( )
A.30°
B.60°
C.90°
D.120°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的一个焦点为
,其左顶点
在圆
上.
(Ⅰ)求椭圆
的方程;
(Ⅱ)直线
交椭圆
于
两点,设点
关于
轴的对称点为
(点
与点
不重合),且直线
与
轴的交于点
,试问
的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com