【题目】如图,在直三棱柱
中, AB=1,
,∠ABC=
.
(1 )证明:
;
(2)求二面角A—
—B的正切值.
![]()
【答案】解:方法一
![]()
(2)如图所示,作
交
于
,连
,由三垂线定理可得![]()
![]()
∴
为所求二面角的平面角,
在
中,
……8分
在
中,
,…………10分
所以
………………11分
即 二面角A—
—B的余弦值是
。………………………12分
![]()
………………11分
所以 二面角
所成角的余弦值是
………………………12分
【解析】
试题(1)欲证AB⊥A1C,而A1C平面ACC1A1,可先证AB⊥平面ACC1A1,根据三棱柱ABC﹣A1B1C1为直三棱柱,可知AB⊥AA1,由正弦定理得AB⊥AC,满足线面垂直的判定定理所需条件;
(2)作AD⊥A1C交A1C于D点,连接BD,由三垂线定理知BD⊥A1C,则∠ADB为二面角A﹣A1C﹣B的平面角,在Rt△BAD中,求出二面角A﹣A1C﹣B的余弦值即可.
(1)证明:∵三棱柱ABC﹣A1B1C1为直三棱柱,∴AB⊥AA1,
在△ABC中,AB=1,AC=
,∠ABC=60°,由正弦定理得∠ACB=30°,
∴∠BAC=90°,即AB⊥AC,
∴AB⊥平面ACC1A1,
又A1C
∴AB⊥A1C.
(2)解:如图,作AD⊥A1C交A1C于D点,连接BD,
由三垂线定理知BD⊥A1C,
∴∠ADB为二面角A﹣A1C﹣B的平面角.
在Rt△AA1C中,AD=
=
,
在Rt△BAD中,tan∠ADB=
=
,
∴cos∠ADB=
,
即二面角A﹣A1C﹣B的大小为arccos
.
![]()
科目:高中数学 来源: 题型:
【题目】函数f(x)=6cos2
+
sinωx﹣3(ω>2)在一个周期内的图象如图所示,A为图象的最高点,B,C为图象与x轴的交点,且ABC为正三角形. ![]()
(1)求ω的值;
(2)求函数f(x)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}为等差数列,数列{bn}为等比数列.若a1<a2 , b1<b2 , 且bi=ai2(i=1,2,3),则数列{bn}的公比为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解甲、乙两所学校全体高三年级学生在该地区八校联考中的数学成绩情况,从两校各随机抽取60名学生,将所得样本作出频数分布统计表如下: 甲校:
分组 | [70,80) | [80,90) | [90,100) | [100,110) |
频数 | 2 | 5 | 9 | 10 |
分组 | [110,120) | [120,130) | [130,140) | [140,150] |
频数 | 14 | 10 | 6 | 4 |
乙校:
分组 | [70,80) | [80,90) | [90,100) | [100,110) |
频数 | 2 | 4 | 8 | 16 |
分组 | [110,120) | [120,130) | [130,140) | [140,150] |
频数 | 15 | 6 | 6 | 3 |
以抽样所得样本数据估计总体
(1)比较甲、乙两校学生的数学平均成绩的高低;
(2)若规定数学成绩不低于120分为优秀,从甲、乙两校全体高三学生中各随机抽取2人,其中数学成绩为优秀的共X人,求X的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|2x+2|﹣|x﹣2|. (Ⅰ)求不等式f(x)>2的解集;
(Ⅱ)若x∈R,f(x)≥t2﹣
t恒成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等差数列{an}的前n项和为Sn , 已知a2=7,a3为整数,且Sn的最大值为S5 .
(1)求{an}的通项公式;
(2)设bn=
,求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C1的极坐标方程为ρ2cos2θ=18,曲线C2的极坐标方程为θ=
,曲线C1 , C2相交于A,B两点.
(1)求A,B两点的极坐标;
(2)曲线C1与直线
(t为参数)分别相交于M,N两点,求线段MN的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知圆
的半径为2,圆心在
轴的正半轴上,且与直线
相切.
(1)求圆
的方程。
(2)在圆
上,是否存在点
,使得直线
与圆
相交于不同的两点
,且△
的面积最大?若存在,求出点
的坐标及对应的△
的面积;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com