精英家教网 > 高中数学 > 题目详情
二次函数f(x)=ax2+bx+c(a,b∈R,a≠0)满足条件:
①当x∈R时,f(x)的图象关于直线x=-1对称;②f(1)=1;③f(x)在R上的最小值为0;
(1)求函数f(x)的解析式;
(2)求最大的m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.
【答案】分析:(1)利用条件①②③,可确定解析式中的参数,从而可得函数f(x)的解析式;
(2)y=f(x+t)的图象是由y=f(x)平移t个单位得到,要x∈[1,m]时,f(x+t)≤x即y=f(x+t)的图象在y=x的图象的下方,且m最大.
解答:解:(1)∵f(x)的对称轴为x=-1,
=-1,即b=2a…(1分)
又f(1)=1,即a+b+c=1…(2分)
由条件③知:a>0,且,即b2=4ac…(3分)
由上可求得…(4分)
…(5分)
(2)由(1)知:,图象开口向上.
而y=f(x+t)的图象是由y=f(x)平移t个单位得到,要x∈[1,m]时,f(x+t)≤x
即y=f(x+t)的图象在y=x的图象的下方,且m最大.…(7分)
∴1,m应该是y=f(x+t)与y=x的交点横坐标,…(8分)
即1,m是的两根,…(9分)
由1是的一个根,得(t+2)2=4,解得t=0,或t=-4…(11分)
把t=0代入原方程得x1=x2=1(这与m>1矛盾)…(12分)
把t=-4代入原方程得x2-10x+9=0,解得x1=1,x2=9∴
m=9…(13分)
综上知:m的最大值为9.…(14分)
点评:本题考查待定系数法求函数的解析式,考查函数的最值问题,将问题转化为y=f(x+t)的图象在y=x的图象的下方,且m最大是关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=a(x+1)2+4-a,其中a为常数且0<a<3.取x1,x2满足:x1>x2,x1+x2=1-a,则f(x1)与f(x2)的大小关系为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=a(x-m)(x-n)(m<n),若不等式f(x)>0的解集是(m,n)且不等式f(x)+2>0的解集是(α,β),则实数m、n、α、β的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源:2012年人教B版高中数学必修一2.4函数的零点练习卷(一)(解析版) 题型:解答题

已知二次函数f(x)=a+bx(a,b是常数且a0)满足条件:f(2)=0.方程f(x)=x有等根

(1)求f(x)的解析式;

(2)问:是否存在实数m,n使得f(x)定义域和值域分别为[m,n]和

[2m,2n],如存在,求出m,n的值;如不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知二次函数f(x)=a(x+1)2+4-a,其中a为常数且0<a<3.取x1,x2满足:x1>x2,x1+x2=1-a,则f(x1)与f(x2)的大小关系为(  )
A.不确定,与x1,x2的取值有关
B.f(x1)>f(x2
C.f(x1)<f(x2
D.f(x1)=f(x2

查看答案和解析>>

科目:高中数学 来源:2006-2007学年广东省阳江市高二(上)期末数学试卷(理科)(解析版) 题型:选择题

已知二次函数f(x)=a(x-m)(x-n)(m<n),若不等式f(x)>0的解集是(m,n)且不等式f(x)+2>0的解集是(α,β),则实数m、n、α、β的大小关系是( )
A.m<α<β<n
B.α<m<n<β
C.m<α<n<β
D.α<m<β<n

查看答案和解析>>

同步练习册答案