精英家教网 > 高中数学 > 题目详情
已知a、b、c分别是△ABC的三个内角A、B、C所对的边.若△ABC面积S△ABC=
3
2
,c=2,A=60°
,则b的值为
1
1
;a的值为
3
3
分析:由三角形的面积公式可得,S△ABC=
1
2
bcsinA
及已知可求b,由余弦定理可得,cosA=
b2+c2-a2
2bc
可求A
解答:解:由三角形的面积公式可得,S△ABC=
1
2
bcsinA
=
1
2
b×2×
3
2
=
3
b
2

由题意可得,
3
b
2
=
3
2

∴b=1
由余弦定理可得,cosA=cos60°=
b2+c2-a2
2bc

1
2
=
1+4-a2
4

∴a=
3

故答案为:1,
3
点评:本题主要考查了正弦定理及余弦定理在求解三角形中的简单应用,属于基础试题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a、b、c分别是△ABC三个内角A、B、C的对边.
(1)若b2=ac,求角B的范围.
(2)若acosA=bcosB,试判断△ABC的形状,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=
3
,A+C=2B,则sinC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b、c分别是△ABC的三个内角A、B、C所对的边,若
cosB
cosC
=-
b
2a+c
,则B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC中角A,B,C的对边,且sin2A+sin2C-sin2B=sinAsinC.
 (1)求角B的大小;
 (2)若c=3a,求tanA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC的三个内角A,B,C的对边,且满足2asinB-
3
b=0.
(Ⅰ)求角A的大小;
(Ⅱ)当A为锐角时,求函数y=
3
sinB+sin(C-
π
6
)的最大值.

查看答案和解析>>

同步练习册答案