【题目】如图,已知圆O外有一点P,作圆O的切线PM,M为切点,过PM的中点N,作割线NAB,交圆于A、B两点,连接PA并延长,交圆O于点C,连续PB交圆O于点D,若MC=BC. ![]()
(1)求证:△APM∽△ABP;
(2)求证:四边形PMCD是平行四边形.
【答案】
(1)证明:∵PM是圆O的切线,NAB是圆O的割线,N是PM的中点,
∴MN2=PN2=NANB,
∴
,
又∵∠PNA=∠BNP,
∴△PNA∽△BNP,
∴∠APN=∠PBN,即∠APM=∠PBA,.
∵MC=BC,
∴∠MAC=∠BAC,
∴∠MAP=∠PAB,
∴△APM∽△ABP
(2)证明:∵∠ACD=∠PBN,
∴∠ACD=∠PBN=∠APN,即∠PCD=∠CPM,
∴PM∥CD.
∵△APM∽△ABP,
∴∠PMA=∠BPA
∵PM是圆O的切线,
∴∠PMA=∠MCP,
∴∠PMA=∠BPA=∠MCP,即∠MCP=∠DPC,
∴MC∥PD,
∴四边形PMCD是平行四边形
【解析】(1)由切割线定理,及N是PM的中点,可得PN2=NANB,进而
,结合∠PNA=∠BNP,可得△PNA∽△BNP,则∠APN=∠PBN,即∠APM=∠PBA;再由MC=BC,可得∠MAC=∠BAC,再由等角的补角相等可得∠MAP=∠PAB,进而得到△APM∽△ABP(2)由∠ACD=∠PBN,可得∠PCD=∠CPM,即PM∥CD;由△APM∽△ABP,PM是圆O的切线,可证得∠MCP=∠DPC,即MC∥PD;再由平行四边形的判定定理得到四边形PMCD是平行四边形.
科目:高中数学 来源: 题型:
【题目】
已知函数f(x)=2x3-3(a+1)x2+6ax,a∈R.
(Ⅰ)曲线y=f(x)在x=0处的切线的斜率为3,求a的值;
(Ⅱ)若对于任意x∈(0,+∞),f(x)+f(-x)≥12lnx恒成立,求a的取值范围;
(Ⅲ)若a>1,设函数f(x)在区间[1,2]上的最大值、最小值分别为M(a)、m(a),
记h(a)=M(a)-m(a),求h(a)的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分几口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探,由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据资料见如表:
![]()
(参考公式和计算结果:
,
,
,
)
(1)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为
,求
的值,并估计
的预报值.
(2)现准备勘探新井
,若通过1,3,5,7号并计算出的
,
的值(
,
精确到0.01)相比于(1)中的
,
,值之差不超过10%,则使用位置最接近的已有旧井
,否则在新位置打开,请判断可否使用旧井?
(3)设出油量与勘探深度的比值
不低于20的勘探井称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数
的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】100名学生报名参加A、B两个课外活动小组,报名参加A组的人数是全体学生人数的
,报名参加B组的人数比报名参加A组的人数多3,两组都没报名的人数是同时报名参加A、B两组人数的
多1,求同时报名参加A、B两组人数( )
A.36
B.13
C.24
D.27
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的中心在原点,焦点在
轴上,离心率等于
,它的一个顶点恰好是抛物线
的焦点。
(1)求椭圆C的标准方程。
(2)已知点
在椭圆C上,点A、B是椭圆C上不同于P、Q的两个动点,且满足:
。试问:直线AB的斜率是否为定值?请说明理由。
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=
x2﹣mlnx,g(x)=x2﹣(m+1)x,m>0.
(1)求函数f(x)的单调区间;
(2)当m≥1时,讨论函数f(x)与g(x)图象的交点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C1的参数方程是
(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为
.
(1)求点A,B,C,D的直角坐标;
(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com