精英家教网 > 高中数学 > 题目详情

以椭圆的右焦点F2为圆心作一个圆,使此圆过椭圆的中心,交椭圆于点M、N,若直线MF1(F1为椭圆左焦点)是圆F2的切线,则椭圆的离心率为(    )

A.2-        B.-1          C.            D.

B


解析:

由题意|MF2|=c,

由椭圆定义|MF1|=2a-c.

又MF1⊥MF2,

∴c2+(2a-c)2=(2c)2化简后两边除以a2,

得e2+2e-2=0,解得e=-1(负值已舍去).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以椭圆的右焦点F2为圆心的圆恰好过椭圆的中心,交椭圆于点M、N,椭圆的左焦点为F1,且直线MF1与此圆相切,则椭圆的离心率e为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

以椭圆的右焦点F2为圆心作一个圆,使此圆过椭圆中心O并交椭圆于点M,N,若过椭圆左焦点F1的直线MF1是圆F2的切线,则椭圆的离心率(  )
A、
3
B、
3
+1
C、
3
-1
D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

以椭圆的右焦点F2为圆心作一个圆,使此圆过椭圆的中心O并交椭圆于点M、N,若过椭圆的左焦点F1的直线MF1是圆F2的切线,则椭圆的离心率为
3
-1
3
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

以椭圆的右焦点F2为圆心作一个圆过椭圆的中心O并交于椭圆于M、N,若过椭圆左焦点F1的直线MF1是圆的切线,则椭圆的右准线l与圆F2的位置关系是
相交
相交

查看答案和解析>>

科目:高中数学 来源: 题型:

以椭圆的右焦点F2为圆心作一个圆,使此圆过椭圆的中心O并交椭圆于点M、N,若过椭圆的左焦点F1的直线MF1是圆F2的切线,则右准线与圆F2(  )

查看答案和解析>>

同步练习册答案