精英家教网 > 高中数学 > 题目详情
如图2-2-2,设SASB是圆锥SO的两条母线,O是底面圆心,C是SB上一点,求证:AC与平面SOB不垂直.

图2-2-2

证明:假设AC⊥平面SOB,?

∵直线SO在平面SOB内,?

SOAC.?

SO⊥底面圆O,

SOAB.?

SO⊥平面SAB.?

∴平面SAB∥底面圆O.?

这显然出现矛盾,∴假设不成立,?

AC与平面SOB不垂直.

点评:否定性地问题常用反证法.例如证明异面直线,可以假设共面,再把假设作为已知条件推导出矛盾.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,设三棱锥S-ABC的三个侧棱与底面ABC所成的角都是60°,又∠BAC=60°,且SA⊥BC.
(1)求证:S-ABC为正三棱锥;
(2)已知SA=a,求S-ABC的全面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网某工艺品厂要生产如图所示的一种工艺品,该工艺品由一个圆柱和一个半球组成,要求半球的半径和圆柱的底面半径之比为3:2,工艺品的体积为34πcm3.设圆柱的底面直径为4x(cm),工艺品的表面积为S(cm2).
(1)试写出S关于x的函数关系式;
(2)怎样设计才能使工艺品的表面积最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形ABCD中,AB=4,AD=3,E,F分别是边AB,BC上的点,且AE=BF=x,设五边形AEFCD的面积为s,周长为c.
(1)分别写出s,c关于x的函数解析式,并指出它们的定义域.
(2)分别求s,c的最小值及取最小值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图放置的边长为1的正方形PABC沿x轴滚动(向右为顺时针,向左为逆时针).设顶点p(x,y)的轨迹方程是y=f(x),则关于f(x)的最小正周期T及y=f(x)在其两个相邻零点间的图象与x轴所围区域的面积S的正确结论是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西)如图,|OA|=2(单位:m),OB=1(单位:m),OA与OB的夹角为
π
6
,以A为圆心,AB为半径作圆弧
BDC
与线段OA延长线交与点C.甲、乙两质点同时从点O出发,甲先以速度1(单位:m/s)沿线段OB行至点B,再以速度3(单位:m/s)沿圆弧
BDC
行至点C后停止;乙以速率2(单位:m/s)沿线段OA行至A点后停止.设t时刻甲、乙所到的两点连线与它们经过的路径所围成图形的面积为S(t)(S(0)=0),则函数y=S(t)的图象大致是(  )

查看答案和解析>>

同步练习册答案