【题目】为探索课堂教学改革,惠来县某中学数学老师用传统教学和“导学案”两种教学方式,在甲、乙两个平行班进行教学实验.为了解教学效果,期末考试后,分别从两个班级各随机抽取20名学生的成绩进行统计,得到如下茎叶图.记成绩不低于70分者为“成绩优良”.
![]()
(Ⅰ)分析甲、乙两班的样本成绩,大致判断哪种教学方式的教学效果更佳,并说明理由;
(Ⅱ)由以上统计数据完成下面的
列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩是否优良与教学方式有关”?
甲班 | 乙班 | 总计 | |
成绩优良 | |||
成绩不优良 | |||
总计 |
参考公式:
,其中
是样本容量.
独立性检验临界值表:
![]()
【答案】(Ⅰ)见解析(Ⅱ)能
【解析】
(Ⅰ)根据茎叶图中数据的特征,可知数据越集中,成绩越稳定,也即是效果越好,进而可得出结果;
(Ⅱ)根据题意写出列联表,结合表中数据求出
的观测值,结合临界值表,即可求出结果.
(Ⅰ)乙班(“导学案”教学方式)教学效果更佳.
理由1、乙班大多在70以上,甲班70分以下的明显更多;
理由2、甲班样本数学成绩的平均分为:70.2;乙班样本数学成绩前十的平均分为:79.05,高10%以上.
理由3、甲班样本数学成绩的中位数为
, 乙班样本成绩的中位数
,高10%以上.
(Ⅱ)列联表如下:
甲班 | 乙班 | 总计 | |
成绩优良 | 10 | 16 | 26 |
成绩不优良 | 10 | 4 | 14 |
总计 | 20 | 20 | 40 |
由上表可得
.
所以能在犯错误的概率不超过0.05的前提下认为“成绩是否优良与教学方式有关”.
科目:高中数学 来源: 题型:
【题目】如图,在正方体
中,点
在线段
上运动,则下列判断中正确的是( )
![]()
①平面
平面
;
②
平面
;
③异面直线
与
所成角的取值范围是
;
④三棱锥
的体积不变.
A. ①② B. ①②④ C. ③④ D. ①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD-ABCD中,平面
垂直于对角线AC,且平面
截得正方体的六个表面得到截面六边形,记此截面六边形的面积为S,周长为l,则( )
![]()
A. S为定值,l不为定值 B. S不为定值,l为定值
C. S与l均为定值 D. S与l均不为定值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某汽车品牌为了了解客户对于其旗下的五种型号汽车的满意情况,随机抽取了一些客户进行回访,调查结果如下表:
汽车型号 | I | II | III | IV | V |
回访客户(人数) | 250 | 100 | 200 | 700 | 350 |
满意率 | 0.5 | 0.3 | 0.6 | 0.3 | 0.2 |
满意率是指:某种型号汽车的回访客户中,满意人数与总人数的比值.
(Ⅰ) 从III型号汽车的回访客户中随机选取1人,则这个客户不满意的概率为________;
(Ⅱ) 从所有的客户中随机选取1个人,估计这个客户满意的概率;
(Ⅲ) 汽车公司拟改变投资策略,这将导致不同型号汽车的满意率发生变化.假设表格中只有两种型号汽车的满意率数据发生变化,那么哪种型号汽车的满意率增加0.1,哪种型号汽车的满意率减少0.1,使得获得满意的客户人数与样本中的客户总人数的比值达到最大?(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列关于命题的说法错误的是( )
A. 命题“若
,则
”的逆否命题为“若
,则
”
B. “
”是“函数
在区间
上为增函数”的充分不必要条件
C. 命题“
,使得
”的否定是“
,均有
”
D. “若
为
的极值点,则
”的逆命题为真命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对某种书籍每册的成本费
(元)与印刷册数
(千册)的数据作了初步处理,得到下面的散点图及一些统计量的值.
|
|
|
|
|
|
|
4.83 | 4.22 | 0.3775 | 60.17 | 0.60 | -39.38 | 4.8 |
![]()
其中
,
.
为了预测印刷
千册时每册的成本费,建立了两个回归模型:
,
.
(1)根据散点图,你认为选择哪个模型预测更可靠?(只选出模型即可)
(2)根据所给数据和(1)中的模型选择,求
关于
的回归方程,并预测印刷
千册时每册的成本费.
附:对于一组数据
,
,…,
,其回归方程
的斜率和截距的最小二乘估计公式分别为:
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com