【题目】设
的内角A,B,C的对边分别为a,b,c,
,且B为钝角,
(1)
;(2)求
的取值范围
【答案】(1)B=
+A.(2)(
,
]
【解析】分析:(I)由题意及正弦定理,得
,进而得
,即可求解;
(II)由(I)知,
,得到
,又由三角恒等变式的公式得
,进而看求解其取值范围.
详解:(I)由a=btanA及正弦定理,得
,所以sinB=cosA,即 sinB=sin(
+A).
又B为钝角,因此
+A
(
,A),故B=
+A.
(II)由(I)知,C=
-(A+B)=
-(2A+
)=
-2A>0,所以A
,
于是sinA+sinC=sinA+sin(
-2A)= sinA+cos2A=-2
A+sinA+1
=-2(sinA-
)
+
因为0<A<
,所以0<sinA<
,因此
由此可知sinA+sinC的取值范围是(
,
]
科目:高中数学 来源: 题型:
【题目】利用随机模拟的方法可以估计图中由曲线
与两直线x=2及y=0所围成的阴影部分的面积S:①先产生两组0~1的均匀随机数,a=RAND( ),b=RAND( );② 做变换,令x=2a,y=2b;③产生N个点(x,y),并统计落在阴影内的点(x,y)的个数
,已知某同学用计算机做模拟试验结果,选取了以下20组数据(如图所示),则据此可估计S的值为____.
x | y | y-0.5*x*x |
0.441414481 | 1.849136261 | 1.751712889 |
1.836710045 | 0.508951247 | -1.177800647 |
1.389538592 | 0.999398689 | 0.033989941 |
0.745446842 | 1.542498362 | 1.264652865 |
0.981548556 | 1.928476536 | 1.446757752 |
1.87036015 | 1.287100762 | -0.462022784 |
1.20252176 | 1.271691664 | 0.548662372 |
1.931929493 | 0.920911487 | -0.945264297 |
0.450507939 | 1.561663263 | 1.460184562 |
1.356178263 | 1.856227093 | 0.936617353 |
0.408489063 | 1.564834147 | 1.481402489 |
0.163980707 | 0.135034106 | 0.121589269 |
1.868152447 | 0.350326824 | -1.394669959 |
0.252753469 | 1.287326597 | 1.255384439 |
1.253648606 | 1.872701968 | 1.086884555 |
0.679831952 | 0.140283887 | -0.090801854 |
1.544339084 | 0.804655288 | -0.387836316 |
1.563089931 | 0.872844524 | -0.348780542 |
1.17458008 | 0.867440167 | 0.177620985 |
1.057219794 | 1.791271879 | 1.232415032 |
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
:
的左、右焦点分别为
,上顶点为
,过点
与
垂直的直线交
轴负半轴于点
,且
.
(Ⅰ)求椭圆
的离心率;
(Ⅱ)若过
、
、
三点的圆恰好与直线
:
相切,求椭圆
的方程;
(III)在(Ⅱ)的条件下,过右焦点
作斜率为
的直线
与椭圆
交于
、
两点,在
轴上是否存在点
使得以
为邻边的平行四边形是菱形,如果存在,求出
的取值范围,如果不存在,说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,以原点为圆心,椭圆的短半轴长为半径的
与直线
相切.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过定点
斜率为
的直线与椭圆
交于
两点,若
,求斜率
的值;
(Ⅲ)若(Ⅱ)中的直线
与
交于
两点,设点
在
上,试探究使
的面积为
的点
共有几个?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地方政府要将一块如图所示的直角梯形ABCD空地改建为健身娱乐广场.已知AD//BC,
百米,
百米,广场入口P在AB上,且
,根据规划,过点P铺设两条相互垂直的笔直小路PM,PN(小路的宽度不计),点M,N分别在边AD,BC上(包含端点),
区域拟建为跳舞健身广场,
区域拟建为儿童乐园,其它区域铺设绿化草坪,设
.
(1)求绿化草坪面积的最大值;
(2)现拟将两条小路PNM,PN进行不同风格的美化,PM小路的美化费用为每百米1万元,PN小路的美化费用为每百米2万元,试确定M,N的位置,使得小路PM,PN的美化总费用最低,并求出最小费用.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com