精英家教网 > 高中数学 > 题目详情
如图,在直角梯形OABC中,AB∥OC,BC⊥OC,且AB=1,OC=BC=2,直线l:x=t截此梯形所得位于直线l左方的图形面积为S,则函数S=f(t)的大致图像为

解析:当0≤t≤1时,所得图形为直角三角形,则有S=t·2t=t2;当1<t≤2时,所截图形为一直角三角形和一矩形,则有S=1+(t-1)×2=2t-1,∴S=画出函数S=f(t)的图像,故选C.

答案:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示在直角梯形OABC中,∠COA=∠OAB=
π2
,OA=OS=AB=1,OC=4,
点M是棱SB的中点,N是OC上的点,且ON:NC=1:3,以OC,OA,OS所在直线
建立空间直角坐标系O-xyz.
(1)求异面直线MN与BC所成角的余弦值;
(II)求MN与面SAB所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直角梯形OABC中,∠COA=∠OAB=
π2
,OA=OS=AB=1,OC=2,点M是棱SB的中点,N是OC上的点,且ON:NC=1:3.
(1)求异面直线MN与BC所成的角;
(2)求MN与面SAB所成的角.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省高一理科实验班预录模拟数学试卷(解析版) 题型:解答题

如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,

OC=OE=4,DB⊥DC,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交

于M.点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.

(1)求经过B、E、C三点的抛物线的解析式;

(2)是否存在点P,使得以P、Q、M为顶点的三角形与△AOD相似?若存在,求出满足条件

的点P的坐标;若不存在,请说明理由;

(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成

为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:期末题 题型:解答题

附加题
如图所示,在直角梯形OABC中,,OA=OS=AB=1,OC=2,点M是棱SB的中点,N是OC上的点,且ON:NC=1:3.
(1)求异面直线MN与BC所成的角;
(2)求MN与面SAB所成的角.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省无锡市滨湖区梅村高级中学高三(上)11月月考数学试卷(理科)(解析版) 题型:解答题

如图所示,在直角梯形OABC中,,OA=OS=AB=1,OC=2,点M是棱SB的中点,N是OC上的点,且ON:NC=1:3.
(1)求异面直线MN与BC所成的角;
(2)求MN与面SAB所成的角.

查看答案和解析>>

同步练习册答案