精英家教网 > 高中数学 > 题目详情
已知向量ab满足|a|=|b|=1,且|ka+b|=|a-kb|(k>0),令f(k)=a·b。
(1)求f(k)=a·b(用k表示);
(2)当k>0时,f(k)≥x2-2tx-对任意的t∈[-1,1]恒成立,求实数x的取值范围。
解:(1)由题设得|a|2=|b|2=1,
对|ka+b|=|a-kb|两边平方得k2a2+2ka·b+b2=3(a2-2ka·b+k2b2),
整理易得f(k)=a·b=(k>0)。
(2)当且仅当k=1时取等号
欲使f(k)≥x2-2tx-对任意的t∈[-1,1]恒成立,等价于≥x2-2tx-
即g(t)=2xt-x2+1≥0在[-1,1]上恒成立,而g(t)在[-1,1]上为单调函数或常函数
所以
解得
故实数x的取值范围是
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
+
b
|=
3
|
a
-
b
|
|
a
|=|
b
|=1
,则|
3a
-2
b
|
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=2,|
b
|=1,
a
b
的夹角为60°,则|
a
-2
b
|等于
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=
2
,|
b
|=3,
a
b
的夹角为45°,求|3
a
-
b
|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量a,b满足|a|=2,|b|=3,|2a+b|=
37
,则a与b
的夹角为(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浙江模拟)已知向量
a
b
满足|
a
|=2|
b
|≠0,且关于x的函数f(x)=2x3+3|
a
|x2+6
a
b
x+5 在实数集R上单调递增,则向量
a
b
的夹角的取值范围是(  )

查看答案和解析>>

同步练习册答案