ÊýÁÐ{an}µÄǰnÏîºÍ¼ÇΪSn£¬a1=t£¬µã£¨Sn£¬an+1£©ÔÚÖ±Ïßy=2x+1ÉÏ£¬n¡ÊN*£®
£¨1£©ÈôÊýÁÐ{an}ÊǵȱÈÊýÁУ¬ÇóʵÊýtµÄÖµ£»
£¨2£©Éèbn=nan£¬ÔÚ£¨1£©µÄÌõ¼þÏ£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£»
£¨3£©Éè¸÷Ïî¾ù²»Îª0µÄÊýÁÐ{cn}ÖУ¬ËùÓÐÂú×ãci•ci+1£¼0µÄÕûÊýiµÄ¸öÊý³ÆÎªÕâ¸öÊýÁÐ{cn}µÄ¡°»ýÒìºÅÊý¡±£¬ÁîÊýѧ¹«Ê½£¨n¡ÊN*£©£¬ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÇóÊýÁÐ{cn}µÄ¡°»ýÒìºÅÊý¡±£®

½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£¬µ±n¡Ý2ʱ£¬ÓУ¬
Á½Ê½Ïà¼õ£¬µÃ an+1 -an =2an£¬¼´an+1=3an £¨n¡Ý2£©
ËùÒÔ£¬µ±n¡Ý2ʱ£¬{an}ÊǵȱÈÊýÁУ¬ÒªÊ¹n¡Ý1ʱ{an}ÊǵȱÈÊýÁУ¬
ÔòÖ»Ð裬´Ó¶øµÃ³öt=1£®
£¨2£©ÓÉ£¨1£©µÃ£¬µÈ±ÈÊýÁÐ{an}µÄÊ×ÏîΪa1=1£¬¹«±Èq=3£¬¡à£®
¡à£¬
¡à£¬¢Ù£¨7·Ö£©
ÉÏʽÁ½±ß³ËÒÔ3µÃ¢Ú£¬
¢Ù-¢ÚµÃ£¬
¡à£®
£¨3£©ÓÉ£¨2£©Öª£¬¡ß£¬
¡ß£¬£¬¡àc1c2=-1£¼0£®
¡ß£¬¡àÊýÁÐ{cn}µÝÔö£®
ÓÉ£¬µÃµ±n¡Ý2ʱ£¬cn£¾0£®
¡àÊýÁÐ{cn}µÄ¡°»ýÒìºÅÊý¡±Îª1£®
·ÖÎö£º£¨1£©¸ù¾ÝÊýÁеĵÚnÏîÓëǰnÏîºÍµÄ¹ØÏµ¿ÉµÃn¡Ý2ʱ£¬ÓУ¬»¯¼òµÃan+1=3an £¨n¡Ý2£©£¬ÒªÊ¹n¡Ý1ʱ{an}ÊǵȱÈÊýÁУ¬Ö»Ð裬´Ó¶øµÃ³ötµÄÖµ£®
£¨2£©ÓÉ£¨1£©µÃ£¬µÈ±ÈÊýÁÐ{an}µÄÊ×ÏîΪa1=1£¬¹«±Èq=3£¬¹ÊÓУ¬´Ó¶øµÃµ½£¬ÓôíλÏà¼õ·¨Çó³öÊýÁÐ{bn}µÄǰnÏîºÍTn £®
£¨3£©ÓÉÌõ¼þÇóµÃ£¬¼ÆËã¿ÉµÃc1c2=-1£¼0£¬ÔÙÓÉcn+1-cn£¾0¿ÉµÃ£¬ÊýÁÐ{cn}µÝÔö£¬ÓÉ£¬µÃµ±n¡Ý2ʱ£¬cn£¾0£¬ÓÉ´ËÇóµÃÊýÁÐ{cn}µÄ¡°»ýÒìºÅÊý¡±Îª1£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éµÈ±È¹ØÏµµÄÈ·¶¨£¬ÓôíλÏà¼õ·¨¶ÔÊýÁнøÐÐÇóºÍ£¬ÊýÁеĵÚnÏîÓëǰnÏîºÍµÄ¹ØÏµ£¬ÊýÁÐÓ뺯ÊýµÄ×ۺϣ¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèµÈ±ÈÊýÁÐ{an}µÄ¹«±Èq¡Ù1£¬Sn±íʾÊýÁÐ{an}µÄǰnÏîµÄºÍ£¬Tn±íʾÊýÁÐ{an}µÄǰnÏîµÄ³Ë»ý£¬Tn£¨k£©±íʾ{an}µÄǰnÏîÖгýÈ¥µÚkÏîºóÊ£ÓàµÄn-1ÏîµÄ³Ë»ý£¬¼´Tn£¨k£©=
Tn
ak
£¨n£¬k¡ÊN+£¬k¡Ün£©£¬ÔòÊýÁÐ
SnTn
Tn(1)+Tn(2)+¡­+Tn(n)
µÄǰnÏîµÄºÍÊÇ
a12
2-q-q-1
£¨n+nq-
q-qn+1+1-q1-n
1-q
£©
a12
2-q-q-1
£¨n+nq-
q-qn+1+1-q1-n
1-q
£©
£¨ÓÃa1ºÍq±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈôÊýÁÐ{an}µÄͨÏîan=
1
pn-q
£¬ÊµÊýp£¬qÂú×ãp£¾q£¾0ÇÒp£¾1£¬snΪÊýÁÐ{an}µÄǰnÏîºÍ£®
£¨1£©ÇóÖ¤£ºµ±n¡Ý2ʱ£¬pan£¼an-1£»
£¨2£©ÇóÖ¤sn£¼
p
(p-1)(p-q)
(1-
1
pn
)
£»
£¨3£©Èôan=
1
(2n-1)(2n+1-1)
£¬ÇóÖ¤sn£¼
2
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªSnÊÇÊýÁÐ{an}µÄǰnÏîºÍ£¬an£¾0£¬Sn=
a
2
n
+an
2
£¬n¡ÊN*£¬
£¨1£©ÇóÖ¤£º{an}ÊǵȲîÊýÁУ»
£¨2£©ÈôÊýÁÐ{bn}Âú×ãb1=2£¬bn+1=2an+bn£¬ÇóÊýÁÐ{bn}µÄͨÏʽbn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÉÌÇð¶þÄ££©ÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÈôÊýÁÐ{an}µÄ¸÷Ïî°´ÈçϹæÂÉÅÅÁУº
1
2
£¬
1
3
£¬
2
3
£¬
1
4
£¬
2
4
£¬
3
4
£¬
1
5
£¬
2
5
£¬
3
5
£¬
4
5
¡­£¬
1
n
£¬
2
n
£¬¡­£¬
n-1
n
£¬¡­ÓÐÈçÏÂÔËËãºÍ½áÂÛ£º
¢Ùa24=
3
8
£»
¢ÚÊýÁÐa1£¬a2+a3£¬a4+a5+a6£¬a7+a8+a9+a10£¬¡­ÊǵȱÈÊýÁУ»
¢ÛÊýÁÐa1£¬a2+a3£¬a4+a5+a6£¬a7+a8+a9+a10£¬¡­µÄǰnÏîºÍΪTn=
n2+n
4
£»
¢ÜÈô´æÔÚÕýÕûÊýk£¬Ê¹Sk£¼10£¬Sk+1¡Ý10£¬Ôòak=
5
7
£®
ÆäÖÐÕýÈ·µÄ½áÂÛÊÇ
¢Ù¢Û¢Ü
¢Ù¢Û¢Ü
£®£¨½«ÄãÈÏΪÕýÈ·µÄ½áÂÛÐòºÅ¶¼ÌîÉÏ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐÃüÌ⣺
¢ÙÈôÊýÁÐ{an}µÄǰnÏîºÍSn=2n+1£¬ÔòÊýÁÐ{an}ΪµÈ±ÈÊýÁУ»
¢ÚÔÚ¡÷ABCÖУ¬Èç¹ûA=60¡ã£¬a=
6
£¬b=4
£¬ÄÇôÂú×ãÌõ¼þµÄ¡÷ABCÓÐÁ½½â£»
¢ÛÉ躯Êýf£¨x£©=x|x-a|+b£¬Ôòº¯Êýf£¨x£©ÎªÆæº¯ÊýµÄ³äÒªÌõ¼þÊÇa2+b2=0£»
¢ÜÉèÖ±ÏßϵM£ºxcos¦È+£¨y-2£©sin¦È=1£¨0¡Ü¦È¡Ü2¦Ð£©£¬ÔòMÖеÄÖ±ÏßËùÄÜΧ³ÉµÄÕýÈý½ÇÐÎÃæ»ý¶¼ÏàµÈ£®
ÆäÖÐÕæÃüÌâµÄÐòºÅÊÇ
¢Û
¢Û
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸