【题目】已知点
,
(其中
)是曲线
上的两点,
,
两点在
轴上的射影分别为点
,
且
.
(1)当点
的坐标为
时,求直线
的方程;
(2)记
的面积为
,梯形
的面积为
,求
的范围.
科目:高中数学 来源: 题型:
【题目】学校组织高考组考工作,为了搞好接待组委会招募了
名男志愿者和
名女志愿者,调查发现,男、女志愿者中分别有
人和
人喜爱运动,其余不喜爱.
(1)根据以上数据完成以下
列联表;并要求列联表的独立性检验,能否在犯错误的概率不超过
的前提下认为性别与喜爱运动有关?
喜爱运动 | 不喜爱运动 | 总计 | |
男 |
|
| |
女 |
|
| |
总计 |
|
(2)如果从喜欢运动的女志愿者中(其中恰有
人会外语),抽取
名负责翻译工作,则抽出的志愿者中
人恰有一人胜任翻译工作的概率是多少?
参考公式:
,其中
.
参考答数:
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在第十五次全国国民阅读调查中,某地区调查组获得一个容量为
的样本,其中城镇居民
人,农村居民
人.在这些居民中,经常阅读的城镇居民
人,农村居民
人.
(1)填写下面列联表,并判断是否有
的把握认为,经常阅读与居民居住地有关?
城镇居民 | 农村居民 | 合计 | |
经常阅读 |
|
| |
不经常阅读 | |||
合计 |
|
(2)调查组从该样本的城镇居民中按分层抽样抽取出
人,参加一次阅读交流活动,若活动主办方从这
位居民中随机选取
人作交流发言,求被选中的
位居民都是经常阅读居民的概率.
附:
,其中
.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若函数
在
上是增函数,求正数
的取值范围;
(2)当
时,设函数
的图象与x轴的交点为
,
,曲线
在
,
两点处的切线斜率分别为
,
,求证:
+
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD是边长为1的正方形,MD⊥ABCD,NB⊥ABCD.且MD=NB=1.则下列结论中:
![]()
①MC⊥AN
②DB∥平面AMN
③平面CMN⊥平面AMN
④平面DCM∥平面ABN
所有假命题的个数是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程是
为参数),曲线
的参数方程是
为参数),以
为极点,
轴的非负半轴为极轴建立极坐标系.
(1)求直线
和曲线
的极坐标方程;
(2)已知射线
与曲线
交于
两点,射线
与直线
交于
点,若
的面积为1,求
的值和弦长
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高中年级开设了丰富多彩的校本课程,甲、乙两班各随机抽取了5名学生的学分,用茎叶图表示.
,
分别表示甲、乙两班各自5名学生学分的标准差,则
_______
.(填“
”“<”或“=”)
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,且曲线
与
恰有一个公共点.
(Ⅰ)求曲线
的极坐标方程;
(Ⅱ)已知曲线
上两点
,
满足
,求
面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com