(09年江苏模拟)设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;
(2)当m=2时,若函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同零点,求实数 a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由。
解析:(1)由a=0,f(x)≥h(x)可得-mlnx≥-x 即![]()
记
,则f(x)≥h(x)在(1,+∞)上恒成立等价于
.
求得![]()
当
时;
;当
时,
故
在x=e处取得极小值,也是最小值,
即
,故
.
(2)函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同的零点等价于方程x-2lnx=a,在[1,3]上恰有两个相异实根。
令g(x)=x-2lnx,则![]()
当
时,
,当
时,![]()
g(x)在[1,2]上是单调递减函数,在
上是单调递增函数。
故![]()
又g(1)=1,g(3)=3-2ln3
∵g(1)>g(3),∴只需g(2)<a≤g(3),
故a的取值范围是(2-2ln2,3-2ln3)
(3)存在m=
,使得函数f(x)和函数h(x)在公共定义域上具有相同的单调性
,函数f(x)的定义域为(0,+∞)。
若
,则
,函数f(x)在(0,+∞)上单调递增,不合题意;
若
,由
可得2x2-m>0,解得x>
或x<-
(舍去)
故
时,函数的单调递增区间为(
,+∞)
单调递减区间为(0,
)
而h(x)在(0,+∞)上的单调递减区间是(0,
),单调递增区间是(
,+∞)
故只需
=
,解之得m=![]()
科目:高中数学 来源: 题型:
(09年江苏模拟) 设函数
。
(1)写出函数
的最小正周期及单调递减区间;
(2)当
时,函数
的最大值与最小值的和为
,求
的图象、y轴的正半轴及x轴的正半轴三者围成图形的面积。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com