已知
顶点
的坐标为
,
,
.
(
1)求点
到直
线
的距离
及
的面积
;
(2)求
外接圆的方程.
科目:高中数学 来源: 题型:解答题
如图,在矩形ABCD中,AB=4,AD=2,E为AB的中点,现将△ADE沿直线DE翻折成△
,使平面
⊥平面BCDE,F为线段
的中点. ks5u
(Ⅰ)求证:EF∥平面
;
(Ⅱ)求直线
与平面
所成角的正切值. ![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知四棱锥的底面是矩形,侧棱长相等,棱锥的高为4,其俯视图如图所示.
(1)作出此四棱锥的主视图和侧视图,并在图中标出相关的数据;
(2)求该四棱锥的侧面积
.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题12分)
如图1所示,在平行六面体ABCD—A
1B1C1D1中,已知AB=5,AD=4,AA1=3
,AB⊥AD,∠A1AB=∠A1AD=
。(1)求证:顶点A1在底面ABCD上的射影O在∠BAD
的平分线上;
(2)求这个平行六面体的体积。![]()
图1
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
一个几何体是由圆柱
和三棱锥
组合而成,点
、
、
在圆
的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图3所示,其中
,
,
,
.![]()
(1)求证:
;
(2)求二面角
的平面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)请你设计一个包装盒,如下
图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A、B、C、D四个点重合于图中的点P,正好形成一个正四棱挪状的包装盒E、F在AB上,是被切去的一等腰直角三角形斜边的两个端点.设AE= FB=x(
cm).![]()
(I)某广告商要求包装盒的侧面积S(cm2)
最大,试问x应取何值?
(II)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.[
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥P—ABCD的底面为矩形,PA=AD=1,PA⊥面ABCD,E是AB的中点,F为PC上一点,且EF//面PAD。![]()
(I)证明:F为PC的中点;
(II)若二面角C—PD—E的平面角的余弦值为
求直线ED与平面PCD所成的角
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com