【题目】某景区欲建两条圆形观景步道
(宽度忽略不计),如图所示,已知
,
(单位:米),要求圆M与
分别相切于点B,D,圆
与
分别相切于点C,D.
![]()
(1)若
,求圆
的半径;(结果精确到0.1米)
(2)若观景步道
的造价分别为每米0.8千元与每米0.9千元,则当
多大时,总造价最低?最低总造价是多少?(结果分别精确到0.1°和0.1千元)
【答案】(1)34.6米,16.1米;(2)263.8千元.
【解析】
(1)利用切线的性质即可得出圆的半径;
(2)设∠BAD=2α,则总造价y=0.82π60tanα+0.92π60tan(45°﹣α),化简,令1+tanα=x换元,利用基本不等式得出最值.
(1)连结M1M2,AM1,AM2,
∵圆M1与AB,AD相切于B,D,圆M2与AC,AD分别相切于点C,D,
∴M1,M2⊥AD,∠M1AD=
∠BAD=
,∠M2AD=
,
∴M1B=ABtan∠M1AB=60×
=20
≈34.6(米),
∵tan
=
=
,∴tan
=2﹣
,
同理可得:M2D=60×tan
=60(2﹣
)≈16.1(米).
(2)设∠BAD=2α(0<α<
),由(1)可知圆M1的半径为60tanα,圆M2的半径为
60tan(45°﹣α),
设观景步道总造价为y千元,则y=0.82π60tanα+0.92π60tan(45°﹣α)=96πtanα+108π
,
设1+tanα=x,则tanα=x﹣1,且1<x<2.
∴y=96π(x﹣1)+108π(
)=12π(8x+
﹣17)≥84π≈263.8,
当且仅当8x=
即x=
时取等号,
当x=
时,tanα=
,∴α≈26.6°,2α≈53.2°.
∴当∠BAD为53.2°时,观景步道造价最低,最低造价为263.8千元.
![]()
科目:高中数学 来源: 题型:
【题目】已知
是抛物线
上任意一点,
,且点
为线段
的中点.
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)若
为点
关于原点
的对称点,过
的直线交曲线
于
、
两点,直线
交直线
于点
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
(
),点
在
的焦点
的右侧,且
到
的准线的距离是
到
距离的3倍,经过点
的直线与抛物线
交于不同的
、
两点,直线
与直线
交于点
,经过点
且与直线
垂直的直线
交
轴于点
.
(1)求抛物线
的方程和
的坐标;
(2)判断直线
与直线
的位置关系,并说明理由;
(3)椭圆
的两焦点为
、
,在椭圆
外的抛物线
上取一点
,若
、
的斜率分别为
、
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln
+ax﹣1(a≠0).
(I)求函数f(x)的单调区间;
(Ⅱ)已知g(x)+xf(x)=﹣x,若函数g(x)有两个极值点x1,x2(x1<x2),求证:g(x1)<0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知圆
:
(
)和双曲线
:
(
),记
与
轴正半轴、
轴负半轴的公共点分别为
、
,又记
与
在第一、第四象限的公共点分别为
、
.
![]()
(1)若
,且
恰为
的左焦点,求
的两条渐近线的方程;
(2)若
,且
,求实数
的值;
(3)若
恰为
的左焦点,求证:在
轴上不存在这样的点
,使得
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:
的左、右点分别为
点
在椭圆上,且![]()
(1)求椭圆
的方程;
(2)过点(1,0)作斜率为
的直线
交椭圆
于M、N两点,若
求直线
的方程;
(3)点P、Q为椭圆上的两个动点,
为坐标原点,若直线
的斜率之积为
求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果数列
对于任意
,都有
,其中
为常数,则称数列
是“间等差数列”,
为“间公差”.若数列
满足
,
,
.
(1)求证:数列
是“间等差数列”,并求间公差
;
(2)设
为数列
的前n项和,若
的最小值为-153,求实数
的取值范围;
(3)类似地:非零数列
对于任意
,都有
,其中
为常数,则称数列
是“间等比数列”,
为“间公比”.已知数列
中,满足
,
,
,试问数列
是否为“间等比数列”,若是,求最大的整数
使得对于任意
,都有
;若不是,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com