【题目】在△ABC中,a,b,c分别是内角A,B,C的对边,且(a+c)2=b2+3ac.
(Ⅰ)求角B的大小;
(Ⅱ)若b=2,且sinB+sin(C﹣A)=2sin2A,求△ABC的面积.
【答案】解:(Ⅰ)∵(a+c)2=b2+3ac,
∴可得:a2+c2﹣b2=ac,
∴由余弦定理可得:cosB=
=
=
,
∵B∈(0,π),
∴B=
.
(Ⅱ)∵sinB+sin(C﹣A)=2sin2A,
∴sin(C+A)+sin(C﹣A)=2sin2A,
∴sinCcosA+cosCsinA+sinCcosA﹣cosCsinA=4sinAcosA,可得:cosA(sinC﹣2sinA)=0,
∴cosA=0,或sinC=2sinA,
∴当cosA=0时,A=
,可得c=
=
,可得S△ABC=
bc=
=
;
当sinC=2sinA时,由正弦定理知c=2a,由余弦定理可得:4=a2+c2﹣ac=a2+4a2﹣2a2=3a2,
解得:a=
,c=
,S△ABC=
acsinB=
×
×
= ![]()
【解析】(Ⅰ)整理已知等式可得a2+c2﹣b2=ac,由余弦定理可得cosB=
,结合范围B∈(0,π),可求B的值.(Ⅱ)由三角函数恒等变换的应用化简已知可得:cosA(sinC﹣2sinA)=0,可得cosA=0,或sinC=2sinA,
分类讨论,利用三角形面积公式即可计算得解.
【考点精析】解答此题的关键在于理解余弦定理的定义的相关知识,掌握余弦定理:
;
;
.
科目:高中数学 来源: 题型:
【题目】已知椭圆
+
=1两焦点分别为F1、F2 , P是椭圆在第一象限弧上一点,并满足
=1,过P作两条直线PA、PB分别交椭圆于A、B两点.
(1)求P点坐标;
(2)若直线AB的斜率为
,求△PAB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A、B、C是抛物线y2=2px(p>0)上三个不同的点,且AB⊥AC.![]()
(Ⅰ)若A(1,2),B(4,﹣4),求点C的坐标;
(Ⅱ)若抛物线上存在点D,使得线段AD总被直线BC平分,求点A的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂为了解用电量y与气温x℃之间的关系,随机统计了5天的用电量与当天气温,得到如下统计表:
曰期 | 8月1曰 | 8月7日 | 8月14日 | 8月18日 | 8月25日 |
平均气温(℃) | 33 | 30 | 32 | 30 | 25 |
用电量(万度) | 38 | 35 | 41 | 36 | 30 |
xiyi=5446,
xi2=4538,
=
,
=
﹣ ![]()
(1)请根据表中的数据,求出y关于x的线性回归方程.据气象預报9月3日的平均气温是 23℃,请预测9月3日的用电量;(结果保留整数)
(2)请从表中任选两天,记用电量(万度)超过35的天数为ξ,求ξ的概率分布列,并求其数学期望和方差.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C1的参数方程是
(α为参数),以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ=1.
(Ⅰ)分别写出C1的极坐标方程和C2的直角坐标方程;
(Ⅱ)若射线l的极坐标方程θ=
(ρ≥0),且l分别交曲线C1、C2于A、B两点,求|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,
,AB⊥AC,D是棱BB1的中点. ![]()
(Ⅰ)证明:平面A1DC⊥平面ADC;
(Ⅱ)求平面A1DC与平面ABC所成二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种产品的广告费用支出
与销售额
之间有如下的对应数据(单位:万元):
![]()
(1)求
关于
的线性回归直线方程;
(2)据此估计广告费用为10万元时销售收入
的值.
(附:对于线性回归方程
,其中
)
参考公式: ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com