如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,且
底面ABCD,
,E是PA的中点.![]()
(1)求证:平面
平面EBD;
(2)若PA=AB=2,直线PB与平面EBD所成角的正弦值为
,求四棱锥P-ABCD的体积.
(1)证明过程详见解析;(2)
.
解析试题分析:本题主要以四棱锥为几何背景考查线面垂直、面面垂直、向量法、线面角、四棱锥的体积等基础知识,考查空间想象能力、逻辑推理能力、计算能力.第一问,利用线面垂直的性质得PA⊥BD,又因为BD⊥PC,利用线面垂直的判定得到BD⊥平面PAC,最后利用面面垂直的判定得到平面PAC⊥平面EBD;第二问,由于BD⊥平面PAC,所以BD⊥AC,得到ABCD为菱形,根据垂直关系建立空间直角坐标系,得到相关的的坐标,从而得到相关向量的坐标,用向量法求出平面EBD的一个法向量,再利用夹角公式列出等式,在
中,列出一个等式,2个等式联立,解出b和c的值,得到b和c即OB和OC边长后,即可求出面ABCD的面积,而PA是锥体的高,利用锥体的体积公式
求出四棱锥的体积.
试题解析:(1)因为PA⊥平面ABCD,所以PA⊥BD.
又BD⊥PC,所以BD⊥平面PAC,
因为BDÌ平面EBD,所以平面PAC⊥平面EBD. 4分![]()
(2)由(1)可知,BD⊥AC,所以ABCD是菱形,BC=AB=2. 5分
设AC∩BD=O,建立如图所示的坐标系O-xyz,设OB=b,OC=c,
则P(0,-c,2),B(b,0,0),E(0,-c,1),C(0,c,0).
,
,
.
设n=(x,y,z)是面EBD的一个法向量,则
,
即
取n=(0,1,c). 8分
依题意,
. ①
记直线PB与平面EBD所成的角为θ,由已知条件
. ②
解得
,c=1. 10分
所以四棱锥P-ABCD的体积
. 12分
考点:线面垂直、面面垂直、向量法、线面角、四棱锥的体积.
科目:高中数学 来源: 题型:解答题
如图所示,正方形
与矩形
所在平面互相垂直,
,点
为
的中点.
(1)求证:
∥平面
;(2)求证:![]()
![]()
;
(3)在线段
上是否存在点
,使二面角
的大小为
?若存在,求出
的长;若不存在,请说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5).
(1)求以
,
为边的平行四边形的面积;
(2)若|a|=
,且a分别与
,
垂直,求向量a的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,
是直角梯形,∠
=90°,
∥
,
=1,
=2,又
=1,∠
=120°,
⊥
,直线
与直线
所成的角为60°.
(1)求二面角
的的余弦值;
(2)求点
到面
的距离.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥S-ABCD中,SD⊥底面ABCD,底面ABCD是矩形,SD=AD=
AB,E是SA的中点.![]()
(1)求证:平面BED⊥平面SAB.
(2)求直线SA与平面BED所成角的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com