【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
,射线
交曲线
于点
,倾斜角为
的直线
过线段
的中点
且与曲线
交于
、
两点.
(1)求曲线
的直角坐标方程及直线
的参数方程;
(2)当直线
倾斜角
为何值时,
取最小值,并求出
最小值.
【答案】(1)曲线
的直角坐标方程为
;直线
的参数方程为
(
为参数)(2)![]()
【解析】
(1)利用
,
,可将曲线
的极坐标系方程转化为直角坐标系方程,然后求出点A的极坐标并转化为直角坐标,可得点B的坐标,结合倾斜角为
,直接写出直线
的参数方程;(2)将直线
的参数方程直接代入曲线
方程,得到韦达定理,设
、
对应的参数值分别是
、
,则有
,然后可求出最小值.
(1)因为
,
,
所以曲线
的直角坐标方程为
,即
.
射线
交曲线
于点
,故点
的极坐标为
,
点
的直角坐标为
,
的中点
.
所以倾斜角为
且过点
的直线
的参数方程为
(
为参数).
(2)将直线
的参数方程
(
为参数)代入曲线
方程
中,
并整理得:
.
设
、
对应的参数值分别是
、
,则有:
![]()
故
.
当
,即
时,
取最小值,最小值为
.
科目:高中数学 来源: 题型:
【题目】生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在统计学中,偏差是指个别测定值与测定的平均值之差,在成绩统计时,我们把某个同学的某科考试成绩与该科班平均分的差叫某科偏差.某高二班主任为了了解学生的偏科情况,对学生数学偏差
(单位:分)与历史偏差
(单位:分)之间的关系进行学科偏差分析,决定从全班52位同学中随机抽取一个容量为8的样本进行分析,得到他们的两科成绩偏差数据如下:
学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
数学偏差 | 20 | 15 | 13 | 3 | 2 |
|
|
|
历史偏差 |
|
|
|
|
|
|
|
|
(1)已知
与
之间具有线性相关关系,求
关于
的线性回归方程
;
(2)若这次考试该班数学平均分为118分,历史平均分为
,试预测数学成绩126分的同学的历史成绩.
附:参考公式与参考数据
,
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,点
,直线
,圆
.
(1)求
的取值范围,并求出圆心坐标;
(2)有一动圆
的半径为
,圆心在
上,若动圆
上存在点
,使
,求圆心
的横坐标
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某工厂生产的某种产品中抽取1000件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:
![]()
(1)求这1000件产品质量指标值的样本平均数
和样本方差
(同一组数据用该区间的中点值作代表)
(2)由频率分布直方图可以认为,这种产品的质量指标值
服从正态分布
,其中以
近似为样本平均数
,
近似为样本方差
.
(ⅰ)利用该正态分布,求
;
(ⅱ)某用户从该工厂购买了100件这种产品,记
表示这100件产品中质量指标值为于区间(127.6,140)的产品件数,利用(ⅰ)的结果,求
.
附:
.若
,则
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在
ABC中,角A,B,C所对的边分別为a,b,c,且asinAcosC+csinAcosA=
c.
(1)若c=1,sinC=
,求
ABC的面积S;
(2)若D是AC的中点,且cosB=
,BD=
,求
ABC的三边长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在三棱锥S
ABC中,
,O为BC的中点.
(1)求证:
面ABC;
(2)求异面直线
与AB所成角的余弦值;
(3)在线段
上是否存在一点
,使二面角
的平面角的余弦值为
;若存在,求
的值;若不存在,试说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点
到定直线
:
的距离比到定点
的距离大2.
(1)求动点
的轨迹
的方程;
(2)在
轴正半轴上,是否存在某个确定的点
,过该点的动直线
与曲线
交于
,
两点,使得
为定值.如果存在,求出点
坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,等高的正三棱锥P-ABC与圆锥SO的底面都在平面M上,且圆O过点A,又圆O的直径AD⊥BC,垂足为E,设圆锥SO的底面半径为1,圆锥体积为
。
![]()
(1)求圆锥的侧面积;
(2)求异面直线AB与SD所成角的大小;
(3)若平行于平面M的一个平面N截得三棱锥与圆锥的截面面积之比为
,求三棱锥的侧棱PA与底面ABC所成角的大小。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com