【题目】对于函数
,若存在区间
,使得
,则称函数
为“可等域函数”,区间
为函数
的一个“可等域区间”.给出下列4个函数:
①
;②
; ③
; ④
.
其中存在唯一“可等域区间”的“可等域函数”为( )
(A)①②③ (B)②③ (C)①③ (D)②③④
科目:高中数学 来源: 题型:
【题目】如图,在底面是正方形的四棱锥
中,
平面
,
,
是
的中点.
![]()
(1)求证:
平面
;
(2)在线段
上是否存在点
,使得
平面
?若存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知三棱锥A-BPC中,![]()
,M为AB的中点,D为PB的中点,且
为正三角形.
![]()
(1)求证:
平面APC;
(2)若
,
,求三棱锥D-BCM的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记数列
的前n项和为
,其中所有奇数项之和为
,所有偶数项之和为![]()
若
是等差数列,项数n为偶数,首项
,公差
,且
,求
;
若数列
的首项
,满足
,其中实常数
,且
,请写出满足上述条件常数t的两个不同的值和它们所对应的数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱
中,侧面
底面
,四边形
是边长为2的菱形,
,
,
,E,F分别为AC,
的中点.
![]()
(1)求证:直线EF∥平面
;
(2)设
分别在侧棱
,
上,且
,求平面BPQ分棱柱所成两部分的体积比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分)已知椭圆
,直线
不过原点
且不平行于坐标轴,
与
有两个交点
,
,线段
的中点为
.
(Ⅰ)证明:直线
的斜率与
的斜率的乘积为定值;
(Ⅱ)若
过点
,延长线段
与
交于点
,四边形
能否为平行四边形?若能,求此时
的斜率,若不能,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥
的底面是边长为
的菱形,
,点E是棱BC的中点,
,点P在平面ABCD的射影为O,F为棱PA上一点.
![]()
1
求证:平面
平面BCF;
2
若
平面PDE,
,求四棱锥
的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com