已知函数![]()
的图像上两相邻最高点的坐标分别为
和
.(Ⅰ)求
与
的值;(Ⅱ)在
中,
分别是角
的对边,且
求
的取值范围.
【解析】本试题主要考查了三角函数的图像与性质的综合运用。
第一问中,利用
所以由题意知:
,
;第二问中,
,即
,又
,
则
,解得
,
所以![]()
结合正弦定理和三角函数值域得到。
解:(Ⅰ)
,
所以由题意知:
,
;
(Ⅱ)
,即
,又
,
则
,解得
,
所以![]()
因为
,所以
,所以![]()
科目:高中数学 来源: 题型:
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点
已知函数f(x)=ax2+(b+1)x+(b–1)(a≠0)
(1)若a=1,b=–2时,求f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;
(3)在(2)的条件下,若y=f(x)图像上A、B两点的横坐标是函数f(x)的不动点,且A、B关于直线y=kx+
对称,求b的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com