【题目】若实数数列
满足
,则称数列
为“
数列”.
(Ⅰ)若数列
是
数列,且
,求
,
的值;
(Ⅱ)求证:若数列
是
数列,则
的项不可能全是正数,也不可能全是负数;
(Ⅲ)若数列
为
数列,且
中不含值为零的项,记
前
项中值为负数的项的个数为
,求
所有可能取值.
【答案】(Ⅰ)
,
;(Ⅱ)见解析;(Ⅲ)
的取值集合为
.
【解析】
试题分析:(Ⅰ)由递推公式可得,![]()
,
,再由
可得
,
,
;(Ⅱ)此命题是否定性命题,可用反证法证明,即假设数列中各项全是正数(或全是负数),由递推公式推出矛盾即可;(Ⅲ)这类问题的数列应该是有一定的规律,最简单的就是周期数列,首先由(Ⅱ)可知
数列
中项既有负数也有正数,
且最多连续两项都是负数,最多连续三项都是正数.因此存在最小的正整数
满足
(
).设
,则由递推公式计算,最后可知数列是周期为9的周期数列,由刚才的计算可知在
这9个数中有6个正数,3个负数,接着只要对
分别讨论(关键是
中有几个负数).
试题解析:(Ⅰ)因为
是
数列,且![]()
所以
,
所以
,
所以
,解得
,
所以
.
(Ⅱ)假设
数列
的项都是正数,即
,
所以
,
,与假设矛盾.
故
数列
的项不可能全是正数,
假设
数列
的项都是负数,
则
而
,与假设矛盾,
故
数列
的项不可能全是负数.
(Ⅲ)由(Ⅱ)可知
数列
中项既有负数也有正数,
且最多连续两项都是负数,最多连续三项都是正数.
因此存在最小的正整数
满足
(
).
设
,则
.
,
故有
, 即数列
是周期为9的数列
由上可知
这9项中
为负数,
这两项中一个为正数,另一个为负数,其余项都是正数.
因为
,
所以当
时,
;
当
时,
这
项中至多有一项为负数,而且负数项只能是
,
记
这
项中负数项的个数为
,
当
时,若
则
,故
为负数,
此时
,
;
若
则
,故
为负数.
此时
,
,
当
时,
必须为负数,
,
,
综上可知
的取值集合为
.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,已知曲线
,将曲线
上的点向左平移一个单位,然后纵坐标不变,横坐标轴伸长到原来的2倍,得到曲线
,又已知直线
(
是参数),且直线
与曲线
交于
两点.
(I)求曲线
的直角坐标方程,并说明它是什么曲线;
(II)设定点
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱
中,侧棱
底面
,
为棱
中点.
,
,
.
![]()
(I)求证:
平面
.
(II)求证:
平面
.
(III)在棱
的上是否存在点
,使得平面
平面
?如果存在,求此时
的值;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市拟兴建九座高架桥,新闻媒体对此进行了问卷调查,在所有参与调查的市民中,持“支持”、“保留”和“不支持”态度的人数如下表所示:
![]()
(1)在所有参与调查的人中,用分层抽样的方法抽取部分市民做进一步调研(不同态度的群体中亦按年龄分层抽样),已知从“保留”态度的人中抽取了19人,则在“支持”态度的群体中,年龄在40岁以下(含40岁)的人有多少被抽取;
(2)在持“不支持”态度的人中,用分层抽样的方法抽取6人做进一步的调研,将此6人看作一个总体,在这6人中任意选取2人,求至少有1人在40岁以上的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知有穷数列
,
,
,
,
,若数列
中各项都是集合
的元素,则称该数列为
数列.
对于
数列
,定义如下操作过程
从
中任取两项
,
,将
的值添在
的最后,然后删除
,
,这样得到一个
项的新数列,记作
(约定:一个数也视作数列).若
还是
数列,可继续实施操作过程
.得到的新数列记作
,
,如此经过
次操作后得到的新数列记作
.
(Ⅰ)设
,
,
,
,请写出
的所有可能的结果.
(Ⅱ)求证:对
数列
实施操作过程
后得到的数列
仍是
数列.
(Ⅲ)设
,
,
,
,
,
,
,
,
,
,
,求
的所有可能的结果,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆
:
的离心率为
,过其右焦点
与长轴垂直的直线与椭圆在第一象限相交于点
,
.
(1)求椭圆
的标准方程;
(2)设椭圆
的左顶点为
,右顶点为
,点
是椭圆上的动点,且点
与点
,
不重合,直线
与直线
相交于点
,直线
与直线
相交于点
,求证:以线段
为直径的圆恒过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为响应新农村建设,某村计划对现有旧水渠进行改造,已知旧水渠的横断面是一段抛物线弧,顶点为水渠最底端(如图),渠宽为4m,渠深为2m.
(1)考虑到农村耕地面积的减少,为节约水资源,要减少水渠的过水量,在原水渠内填土,使其成为横断面为等腰梯形的新水渠(如图(1)建立平面直角坐标系),新水渠底面与地面平行(不改变渠宽),问新水渠底宽为多少时,所填土的土方量最少?
![]()
(2)考虑到新建果园的灌溉需求,要增大水渠的过水量,现把旧水渠改挖(不能填土)成横断面为等腰梯形的新水渠(如图(2)建立平面直角坐标系),使水渠的底面与地面平行(不改变渠深),要使所挖土的土方量最少,请你设计水渠改挖后的底宽,并求出这个底宽.
![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的
,且该组中青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本.试确定:
(1)游泳组中,青年人、中年人、老年人分别所占的比例;
(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com