精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x2+a|lnx-1|,g(x)=x|x-a|+2-2ln2,a>0.
(Ⅰ)当a=1时,求函数f(x)在区间[1,e]上的最大值;
(Ⅱ)若数学公式恒成立,求a的取值范围;
(Ⅲ)对任意x1∈[1,+∞),总存在惟一的x2∈[2,+∞),使得f(x1)=g(x2)成立,求a的取值范围.

解:(Ⅰ)当a=1,x∈[1,e]时f(x)=x2-lnx+1,
所以f(x)在[1,e]递增,所以f(x)max=f(e)=e2(4分)
(Ⅱ)①当x≥e时,f(x)=x2+alnx-a,f'(x)=2x+,a>0,∴f(x)>0恒成立,
∴f(x)在[e,+∞)上增函数,故当x=e时,ymin=f(e)=e2(5分)
②当1≤x<e时,f(x)=x2-alnx+a,f'(x)=2x-=(x+)(x-),
(i)当≤1即0<a≤2时,f'(x)在x∈(1,e)时为正数,所以f(x)在区间[1,e)上为增函数,
故当x=1时,ymin=1+a,且此时f(1)<f(e)=e2(7分)
(ii)当1<<e,即2<a<2e2时,f'(x)在x∈(1,)时为负数,在间x∈(,e)时为正数,
所以f(x)在区间[1,)上为减函数,在(,e]上为增函数,故当x=时,ymin=-ln,
且此时f()<f(e)=e2(8分)
(iii)当≥e,即a≥2e2时,f'(x)在x∈(1,e)时为负数,所以f(x)在区间[1,e]上为减函数,
故当x=e时,ymin=f(e)=e2(9分)
综上所述,函数y=f(x)的最小值为ymin=(10分)
所以当时,得0<a≤2;当(2<a<2e2)时,无解;
(a≥2e2)时,得不成立.
综上,所求a的取值范围是0<a≤2(11分)
(Ⅲ)①当0<a≤2时,g(x)在[2,+∞)单调递增,由g(2)=6-2a-2ln2≤1+a,
(12分)
②当时,g(x)在[2,+∞)先减后增,由
,设,h'(t)=2+lnt>0(1<t<2),
所以h(t)单调递增且h(2)=0,所以h(t)<0恒成立得2<a<4(14分)
③当时,f(x)在递增,在递减,
在[a,+∞)递增,所以由
,设m(t)=t2-3t+tlnt+2-2ln2,
则m'(t)=2t-2+lnt>0(t∈(2,e2),所以m(t)递增,且m(2)=0,
所以m(t)>0恒成立,无解.
④当a>2e2时,f(x)在递增,在递减,在[a,+∞)递增,
所以由<e得无解.
综上,所求a的取值范围是
分析:(Ⅰ)当a=1,x∈[1,e]化简f(x),然后研究函数f(x)在[1,e]的单调性,从而求出函数f(x)的最大值;
(Ⅱ)讨论x与e的大小去掉绝对值,然后分类讨论讨论导数符号研究函数在[1,+∞)的单调性,从而求出函数f(x)的最小值,使f(x)的最小值恒大于等于,求出a的取值范围;
(Ⅲ)根据(II)的分类讨论求出函数g(x)的最小值,使g(x)的最小值恒小于等于f(x)的最小值,从而求出a的取值范围.
点评:本题主要考查了函数的最值及其几何意义,以及分类讨论的思想,解题的关键是对于恒成立的理解,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案