精英家教网 > 高中数学 > 题目详情

如果,求实数m的值.

答案:0
解析:

解:因为,所以是实数.所以m=03.又因为,所以.所以m=0,即实数m的值是0


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=(m+1)x2-x(m≠-1).
(I)若函数y=f(x)与y=g(x)的图象在公共点P处有相同的切线,求实数m的值和P的坐标;
(II)若函数y=f(x)与y=g(x)的图象有两个不同的交点M、N,求实数m的取值范围;
(III)在(II)的条件下,过线段MN的中点作x轴的垂线分别与f(x)的图象和g(x)的图象交于S、T点,以S点为切点
作f(x)的切线l1,以T为切点作g(x)的切线l2,是否存在实数m,使得l1∥l2?如果存在,求出m的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的不等式x2+mx+6>0(m为常数).
(1)如果m=-5,求不等式的解集;
(2)如果不等式的解集为{x|x<1或x>6},求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x+
a
x
有如下性质:如果常数a>0,那么该函数在(0,
a
]
上是减函数,在[
a
,+∞)
上是增函数.
(1)如果函数y=x+
3m
x
(x>0)
的值域是[6,+∞),求实数m的值;
(2)求函数f(x)=x2+
a
x2
(a>0)在x∈[1,2]上的最小值g(a)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x+
a
x
有如下性质:如果常数a>0,那么该函数在(0,
a
]
上是减函数,在[
a
,+∞)
上是增函数,
(1)如果函数y=x+
3m
x
(x>0)
的值域是[6,+∞),求实数m的值;
(2)研究函数f(x)=x2+
a
x2
(常数a>0)在定义域内的单调性,并说明理由;
(3)若把函数f(x)=x2+
a
x2
(常数a>0)在[1,2]上的最小值记为g(a),求g(a)的表达式.

查看答案和解析>>

同步练习册答案