精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx2+c的图象过点(0,1),且在x=1处的切线方程为y=2x-1.
(1)求f(x)的解析式;
(2)若f(x)在[0,m]上有最小值
1927
,求实数m的取值范围.
分析:(1)由f′(x)=3ax2+2bx,函数f(x)=ax3+bx2+c的图象过点(0,1),且在x=1处的切线方程为y=2x-1,建立方程组,能够求出f(x).
(2)由f(x)=2x3-2x2+1,知f′(x)=6x2-4x,令f′(x)=6x2-4x=0,得x1=0,x2=
2
3
,由此进行求解,能够求出实数m的取值范围.
解答:解:(1)∵f(x)=ax3+bx2+c,
∴f′(x)=3ax2+2bx,
∵函数f(x)=ax3+bx2+c的图象过点(0,1),
且在x=1处的切线方程为y=2x-1,
f(0)=c=1
f(x)=3a+2b=2
a+b+c-2=-1

解得a=2,b=-2,c=1,
∴f(x)=2x3-2x2+1.
(2)∵f(x)=2x3-2x2+1,
∴f′(x)=6x2-4x,
令f′(x)=6x2-4x=0,得x1=0,x2=
2
3

∵f(0)=1,
f(
2
3
)=4×
8
27
-2×
4
9
+1=
19
27

∵f(x)在[0,m]上有最小值
19
27

∴m≥
2
3

∴实数m的取值范围[
2
3
,+∞).
点评:本题考查函数的解析式的求法,考查满足条件的实数值的求法.解题时要认真审题,仔细解答,注意等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案