【题目】已知抛物线
和
的焦点分别为
,点
且
为坐标原点).
(1)求抛物线
的方程;
(2)过点
的直线交
的下半部分于点
,交
的左半部分于点
,求
面积的最小值.
科目:高中数学 来源: 题型:
【题目】设甲、乙、丙三个乒乓球协会分别选派3,1,2名运动员参加某次比赛,甲协会运动员编号分别为
,
,
,乙协会编号为
,丙协会编号分别为
,
,若从这6名运动员中随机抽取2名参加双打比赛.
(1)用所给编号列出所有可能抽取的结果;
(2)求丙协会至少有一名运动员参加双打比赛的概率;
(3)求参加双打比赛的两名运动员来自同一协会的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率为
,且椭圆上一点
的坐标为
.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
,
两点,且以线段
为直径的圆过椭圆的右顶点
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着智能手机的普及,使用手机上网成为了人们日常生活的一部分,很多消费者对手机流量的需求越来越大.某通信公司为了更好地满足消费者对流量的需求,准备推出一款流量包.该通信公司选了人口规模相当的
个城市采用不同的定价方案作为试点,经过一个月的统计,发现该流量包的定价:
(单位:元/月)和购买总人数
(单位:万人)的关系如表:
定价x(元/月) | 20 | 30 | 50 | 60 |
年轻人(40岁以下) | 10 | 15 | 7 | 8 |
中老年人(40岁以及40岁以上) | 20 | 15 | 3 | 2 |
购买总人数y(万人) | 30 | 30 | 10 | 10 |
(Ⅰ)根据表中的数据,请用线性回归模型拟合
与
的关系,求出
关于
的回归方程;并估计
元/月的流量包将有多少人购买?
(Ⅱ)若把
元/月以下(不包括
元)的流量包称为低价流量包,
元以上(包括
元)的流量包称为高价流量包,试运用独立性检验知识,填写下面列联,并通过计算说明是否能在犯错误的概率不超过
的前提下,认为购买人的年龄大小与流量包价格高低有关?
定价x(元/月) | 小于50元 | 大于或等于50元 | 总计 |
年轻人(40岁以下) | |||
中老年人(40岁以及40岁以上) | |||
总计 |
参考公式:其中
![]()
其中![]()
参考数据:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某集团公司为了加强企业管理,树立企业形象,考虑在公司内部对迟到现象进行处罚.现在员工中随机抽取200人进行调查,当不处罚时,有80人会迟到,处罚时,得到如下数据:
处罚金额 | 50 | 100 | 150 | 200 |
迟到的人数 | 50 | 40 | 20 | 0 |
若用表中数据所得频率代替概率.
(Ⅰ)当处罚金定为100元时,员工迟到的概率会比不进行处罚时降低多少?
(Ⅱ)将选取的200人中会迟到的员工分为
,
两类:
类员工在罚金不超过100元时就会改正行为;
类是其他员工.现对
类与
类员工按分层抽样的方法抽取4人依次进行深度问卷,则前两位均为
类员工的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其中
为自然对数的底数,
。
(Ⅰ)若曲线
在点
处的切线与直线
平行,求
的值;
(Ⅱ)若
,问函数
有无极值点?若有,请求出极值点的个数;若没有,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥
的底面
为菱形,且
,
,
,
与
相交于点
.
![]()
(1)求证:
底面
;
(2)求直线
与平面
所成的角
的值;
(3)求平面
与平面
所成二面角
的值.(用反三角函数表示)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,正方体
的棱长为1,
为线段
,
上的动点,过点
的平面截该正方体的截面记为S,则下列命题正确的是______
![]()
①当
且
时,S为等腰梯形;
②当
分别为
,
的中点时,几何体
的体积为
;
③当M为
中点且
时,S与
的交点为R,满足
;
④当M为
中点且
时,S为五边形;
⑤当
且
时,S的面积
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com