【题目】定义在R上的函数f(x)满足f(x)+f(x+5)=16,当x∈(﹣1,9)时,f(x)=x2﹣2x , 则函数f(x)在[0,2016]上的零点个数是 .
【答案】605
【解析】解:∵f(x)+f(x+5)=16,
f(x+5)+f(x+10)=16,
两式相减得,f(x)=f(x+10),
故f(x)为周期为10的函数,x∈(﹣1,9)时,
令f(x)=x2﹣2x=0得:x2=2x ,
在同一坐标系中作出y=x2与y=2x的图象如下,![]()
由图知,当x∈(﹣1,4]时,函数f(x)=x2﹣2x有3个零点(y轴右侧的两个零点为2和4),
∵f’(x)=2x﹣2xln2,∴当x∈(4,9)时,f’(x)<0,函数单调减,即无零点,
综上:函数f(x)在一个周期内有三个零点,
=201+6,
就是说在区间在[0,2016]上有201个完整周期,这201个周期内共603个零点,在[0,6]内有二个零点,
∴函数f(x)在[0,2016]上共有605个零点,
所以答案是:605.
科目:高中数学 来源: 题型:
【题目】如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.![]()
注:年份代码1﹣7分别对应年份2008﹣2014.
(1)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;
(2)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
附注:
参考数据:
=9.32,
=40.17,
=0.55,
≈2.646.
参考公式:
,
回归方程
中斜率和截距的最小二乘估计公式分别为:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xoy中,直线l经过点P(﹣1,0),其倾斜角为α,在以原点O为极点,x轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线C的极坐标方程为ρ2﹣6ρcosθ+1=0. (Ⅰ)若直线l与曲线C有公共点,求α的取值范围;
(Ⅱ)设M(x,y)为曲线C上任意一点,求x+y的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆
恒过点
,且与直线
:
相切.
(1)求动圆圆心
的轨迹
的方程;
(2)探究在曲线
上,是否存在异于原点的两点
,
,当
时,直线
恒过定点?若存在,求出该定点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】潮州统计局就某地居民的月收入调查了
人,并根据所得数据画了样本的频率分
布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在
)。
![]()
(1)求居民月收入在
的频率;
(2)根据频率分布直方图算出样本数据的中位数;
(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这
人中分层抽样方法抽出
人作进一步分析,则月收入在
的这段应抽多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com