精英家教网 > 高中数学 > 题目详情
函数y=Asin(ωx+ϕ)(A>0,ω>0)在x∈(0,7π)内取到一个最大值和一个最小值,且当x=π时,y有最大值3,当x=6π时,y有最小值-3.
(1)求此函数解析式;
(2)写出该函数的单调递增区间;
(3)是否存在实数m,满足不等式Asin()>Asin()?若存在,求出m值(或范围),若不存在,请说明理由.
【答案】分析:(1)根据题意,函数的最值可以确定A,根据在x∈(0,7π)内取到一个最大值和一个最小值,且当x=π时,y有最大值3,当x=6π时,y有最小值-3,可以确定函数的周期,从而求出ω的值和φ的值,从而求得函数的解析式;
(2)令 2kπ-x+≤2kπ+,解此不等式,即可求得函数的单调递增区间;
(3)根据(1)所求得的ω和φ的值,分析的范围,确定函数在该区间上的单调性,即可求得结果.
解答:解:(1)∵当x=π时,y有最大值3,当x=6π时,y有最小值-3.
∴A=[3-(-3)]=3,=5π,
∴T=10π=
∴ω==
∵当x=π时,y有最大值3,
π+ϕ=
∴ϕ=
∴y=3sin(x+),
(2)令 2kπ-x+≤2kπ+得10kπ-4π≤x≤10kπ+π,k∈Z
∴函数的单调递增区间为:{x|10kπ-4π≤x≤10kπ+π   k∈Z};
(3)∵ω=,ϕ=
∴ω+ϕ=+∈(0,),
ω+ϕ=+∈(0,),
而y=sint在(0,)上是增函数
++


解得:
∴m的取值范围是
点评:本题考查根据y=Asin(ωx+φ)的图象求函数的解析式以及求函数的单调区间,问题(3)的设置,增加了题目的难度和新意,易错点在于对∈(0,),∈(0,)的分析与应用,考查灵活应用知识分析解决问题的能力和运算能力,体现了转化的数学思想方法,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数y=Asin(ωx+φ)(ω>0)与x轴的两个相邻的交点坐标为(-4,0),(2,0),则ω=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,某地一天从6时到14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b,则8时的温度大约为
 
°C(精确到1°C)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=Asin(ωx+φ)+C(A>0,ω>0,|φ|<
π2
)在同一周期中最高点的坐标为(2,2),最低点的坐标为(8,-4).
(I)求A,C,ω,φ的值;
(II)求出这个函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,是函数y=Asin(ωx+φ),(-π<φ<π)的图象的一段,O是坐标原点,P是图象的最高点,A点坐标为(5,0),若|
OP
|=
10
OP
OA
=15
,则此函数的解析式为
y=sin(
π
4
x-
π
4
)
y=sin(
π
4
x-
π
4
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:函数y=Asin(ωx+φ),在同一周期内,当x=
π
12
时取最大值y=4;当x=
12
时,取最小值y=-4,那么函数的解析式为:(  )

查看答案和解析>>

同步练习册答案