精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-ax2+3x

    (Ⅰ)若函数f(x)在x∈[1,+∞)上是增函数,求实数a的取值范围;

    (Ⅱ)若x=3是函数f(x)的极值点,设m>1,求函数f(x)在[1,m]上的最小值和最大值.

答案:解:(Ⅰ)依题意得f′(x)=3x2-2ax+3 

欲使函数f(x)在x∈[1,+∞)是增函数,

仅须或解之得  a≤3

故若f(x)在x∈[1,+∞)是增函数,实数a的取值范围为(-∞,3] 

(Ⅱ)由(Ⅰ)得f′(x)=3x2-2ax+3,且x=3是f(x)的极值点,所以f′(3)=0

且30-6a=0,所以a=5 

于是f′(x)=3x2-10x+3=3(x-3)(x),

∴函数f(x)的另一个极值点为x=

所以,在区间(1,3)上f′(x)<0,f(x)是减函数;

在区间(3,+∞)上f′(x)>0,f(x)是增函数

(ⅰ)当1<m≤3时,f(x)的最小值为f(m)=m3-5m2+3m,

最大值为f(1)=-1 

(ⅱ)令f(m)=f(1),即m3-5m2+3m=-1

∴(m-1)(m2-4m-1)=0,

解得m=2+,m=2-(舍),m=1(舍)

即当3<m≤2+时,

f(x)的最小值为f(3)=-9,最大值为f(1)=-1(11分)

(ⅱ)当m>2+时,f(x)的最小值为f(3)=-9,

最大值为f(m)=m3-5m2+3m

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022

已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案