过双曲线
左焦点
,倾斜角为
的直线交双曲线右支于点
,若线段
的中点在
轴上,则此双曲线的离心率为( )
| A. | B. | C.3 | D. |
D
解析试题分析:由于线段PF1的中点M落在y轴上,连接MF2,则|MF1|=|MF2|="|PM|="
|PF1|⇒△PF1F2为直角三角形,△PMF2为等边三角形,于是|PF1|-|PF2|=|MF1|=2a,|F1F2|="2c="
|MF1|=2
a⇒c=
a,由c2=a2+b2可求得b=
a,于是 双曲线的渐近线方程可求。解:连接MF2,由过点 PF1作倾斜角为30°,线段PF1的中点M落在y轴上得:|MF1|=|MF2|═|PM|=
|PF1|,∴△PMF2为等边三角形,△PF1F2为直角三角形,∵是|PF1|-|PF2|=|MF1|=2a,|F1F2|=2c=
|MF1|=2
a,∴c=
a,又c2=a2+b2,∴3a2=a2+b2,∴b=
a,∴双曲线
的离心率为
故选 D.
考点:双曲线定义的灵活应用
点评:本题考查直线与圆锥曲线的位置关系,关键是对双曲线定义的灵活应用及对三角形△PMF2为等边三角形,△PF1F2为直角三角形的分析与应用,属于难题.
科目:高中数学 来源: 题型:单选题
双曲线
过其左焦点F1作x轴的垂线交双曲线于A,B两点,若双曲线右顶点在以AB为直径的圆内,则双曲线离心率的取值范围为
| A.(2,+∞) | B.(1,2) |
| C.( | D.(1, |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com